| 注册
首页|期刊导航|软件导刊|基于混合注意力机制与C2f的行人检测算法研究

基于混合注意力机制与C2f的行人检测算法研究

王志新 王如刚 王媛媛 周锋 郭乃宏

软件导刊2024,Vol.23Issue(1):135-142,8.
软件导刊2024,Vol.23Issue(1):135-142,8.DOI:10.11907/rjdk.231683

基于混合注意力机制与C2f的行人检测算法研究

Research on Pedestrian Detection Algorithm Based on Mixed Attention Mechanism and C2f

王志新 1王如刚 1王媛媛 1周锋 1郭乃宏2

作者信息

  • 1. 盐城工学院 信息工程学院,江苏 盐城 224051
  • 2. 盐城雄鹰精密机械有限公司,江苏 盐城 224006
  • 折叠

摘要

Abstract

Aiming at the problems of missing detection and false detection of small target pedestrians with small scale and dense pedestrians,this paper proposes a pedestrian detection algorithm with mixed attention mechanism and C2f module based on YoloX algorithm.In this algo-rithm,firstly,the BAM module and the C2f module are fused to effectively enhance the characteristics of pedestrians,reduce the amount of calculation,and improve the detection speed.Secondly,the attention mechanism is used to guide the network to pay attention to pedestrian tar-gets,and the characteristic information of pedestrian targets has been further strengthened.Finally,experimental analysis is carried out on the Crowd Human dataset,when the IoU threshold is set to 0.5,the small-scale pedestrian detection accuracy is 21.1%,the mesoscale pedestrian detection accuracy is 47.3%,the large-scale pedestrian detection accuracy is 64.7%,the total pedestrian target detection accuracy is 73.2%,and the detection speed is 24.3 frames per second.Experimental results show that the pedestrian detection algorithm in this paper effectively improves the detection accuracy and detection speed of pedestrian targets,and has good detection performance for pedestrian targets.

关键词

行人检测/特征增强/YoloX/深度学习/注意力机制

Key words

pedestrian detection/feature enhancement/YoloX/deep learning/attention mechanisms

分类

计算机与自动化

引用本文复制引用

王志新,王如刚,王媛媛,周锋,郭乃宏..基于混合注意力机制与C2f的行人检测算法研究[J].软件导刊,2024,23(1):135-142,8.

基金项目

国家自然科学基金项目(61673108) (61673108)

江苏省研究生实践创新计划项目(SJCX22_1685,SJCX21_1517) (SJCX22_1685,SJCX21_1517)

江苏省高等学校自然科学研究重大项目(19KJA110002) (19KJA110002)

江苏省高校自然科学研究面上项目(18KJD510010,19KJB510061) (18KJD510010,19KJB510061)

江苏省自然科学基金项目(BK20181050) (BK20181050)

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文