|国家科技期刊平台
首页|期刊导航|山西大学学报(自然科学版)|基于端叉特征融合的指纹识别算法

基于端叉特征融合的指纹识别算法OACSTPCD

Fingerprint Recognition Algorithm Based on Feature Fusion of Endpoints and Bifurcation Points

中文摘要英文摘要

生物特征识别有多种多样,例如人脸识别、指纹识别、DNA基因测序等,以往各种文献中,大多数采用复杂算法或是深度学习的方法,其实时性不强.本文针对指纹纹路繁杂的特点,去繁取简抽取纹路的端叉关键点特征,利用图像处理技术和最新的OpenCV4实现指纹识别算法,避免了复杂算法和深度学习中计算耗时的问题.首先,利用图像处理的相关技术对采集的图像进行预处理,包括剪裁,旋转,多种滤波;其次,构建指纹端叉融合的特征提取算法确定相应的类型和角度,并绘制出待识别指纹特征融合关键点个数1 670个;最后对指纹识别功能进行测试得出结论.本算法特征提取的平均耗时为47.0 ms,平均匹配时间约为7.7 ms,同时准确率在不同特征提取算法中最高,为93.8%.由此得出该算法能够快速准确地对指纹库的指纹进行识别与比对,有效提高了指纹识别的精度与效率.

There are various types of biometric recognition,such as face recognition,fingerprint recognition,DNA gene sequencing,etc.In literature,most of the methods used are complex algorithms or deep learning methods,which are insufficient in real-time ef-fectiveness.In this paper,aiming at the characteristics of complex fingerprint patterns,we use image processing technology and the latest OpenCV4 to implement fingerprint recognition algorithms,avoiding complex algorithms and time-consuming computation in deep learning.Firstly,the collected images are preprocessed using image processing related technologies,including clipping,rota-tion,and multiple filtering;Secondly,a feature extraction algorithm for fingerprint cross fusion is constructed to determine the corre-sponding types and angles,and 1 670 key points for fingerprint feature fusion to be identified are plotted;Finally,the fingerprint rec-ognition functionality is tested,and the following conclusions are drawn from the experiments.The average time consumed by the feature extraction of this algorithm is 47.0 ms,and the average matching time is approximately 7.7 ms.Additionally,the accuracy is the highest among various feature extraction algorithms,reaching 93.8%.Therefore,it can be concluded that this algorithm enables fast and accurate identification and matching of fingerprints in the fingerprint database,effectively improving the precision and effi-ciency of fingerprint recognition.

李昊翔;陈玉明;吴克寿

厦门理工学院 计算机与信息工程学院,福建 厦门 361000

物理学

指纹识别端叉融合图像处理直方图均衡化OpenCV

fingerprint identificationend fork fusionimage processinghistogram equalizationOpenCV

《山西大学学报(自然科学版)》 2024 (001)

深度粒计算及其在流感病毒抗原变异预测中的应用

9-17 / 9

国家自然科学基金(61976183)

10.13451/j.sxu.ns.2023136

评论