|国家科技期刊平台
首页|期刊导航|山西大学学报(自然科学版)|基于注意力机制的语义对比学习算法

基于注意力机制的语义对比学习算法OACSTPCD

Semantic Contrastive Learning Algorithm Based On Attention Mechanism

中文摘要英文摘要

对比学习中不合适的数据增强会导致语义信息的失真,同一图像在不同类型的数据增强下语义信息有巨大的语义差距;此外,卷积神经网络(CNN)对纹理有强烈偏好,无法精准学习到下游任务所需的深层语义特征表示,针对以上问题,本文提出一种基于注意力的语义对比学习方法(Semantic attention contrastive learning method,SACL).SACL首先利用卷积神经网络提取特征,然后注意力模块挖掘全局特征,获得更高级的语义特征,实现了对低级特征的补充和深层特征的语义融合.其次使用截然不同的数据增强方式构造正负样本对,将弱增强(几何增强)生成的正样本和强增强(纹理增强)生成的负样本进行对比,获得差异更为显著的图像输入.网格化增强视图增加了正样本的个数,加快网络收敛速度.在四个数据集上验证了所提出的语义对比学习算法的有效性,结果表明在ImageNet-100数据集上平均精度可以达到78.3%,可以有效提高模型的分类准确率.

Inappropriate data augmentation in contrastive learning may lead to distortion of semantic information,and there is a huge semantic gap in semantic information about the same image under different types of data augmentation.In addition,the Convolution-al Neural Network(CNN)has a strong preference for textures and cannot accurately learn the deep semantic feature representations required for downstream tasks.In response to the above issues,we propose a method—Semantic attention contrastive learning meth-od(SACL).SACL first utilizes convolutional neural networks to extract features,and then the attention module mines global fea-tures to obtain higher-level semantic features,achieving the supplementation of low-level features and semantic fusion of deep fea-tures.Secondly,the positive and negative sample pairs are constructed using completely different data augmentation methods,and the positive samples generated by weak enhancement(geometric augmentation)and the negative samples generated by strong en-hancement(texture augmentation)are compared to obtain the image input with more significant differences.Gridding augmented view increases the number of positive samples and accelerates network convergence speed.We verified the effectiveness of the pro-posed semantic contrastive learning algorithm on four datasets,and the results showed that the average accuracy of the ImageNet-100 dataset can reach 78.3%,which can effectively improve the classification accuracy of the model.

陈俊芬;吕巧莉;谢博鋆;孙劲松

河北大学 数学与信息科学学院 河北省机器学习与计算智能重点实验室,河北 保定 071002

计算机与自动化

对比学习注意力机制语义特征表示数据增强纹理网格化

contrastive learningattention mechanismsemantic feature representationdata augmentationtexturegridding

《山西大学学报(自然科学版)》 2024 (001)

81-92 / 12

河北省引进留学人员资助项目(C20200302);河北省教育教学改革研究与实践项目(2020GJJG007)

10.13451/j.sxu.ns.2023142

评论