|国家科技期刊平台
首页|期刊导航|计算机技术与发展|基于U-Net网络的医学图像分割研究综述

基于U-Net网络的医学图像分割研究综述OACSTPCD

Review of Medical Image Segmentation Based on U-Net Network

中文摘要英文摘要

近年来随着深度学习技术的快速发展,卷积神经网络(CNN)成为语义分割的重要支撑框架,被广泛运用于多种目标检测与分割的任务当中.在医学图像分割任务中,U-Net网络以其优异的分割性能、可拓展性的网络结构等特点成为该领域研究的热点.如今有众多学者从网络的结构等方面对U-Net进行改进以优化网络性能、提升分割准确度.研究通过对相关文献的分析,首先介绍了基于U-Net的经典改进模型;然后阐述了六大U-Net改进机制:注意力机制、inception模块、残差结构、空洞机制、密集连接结构以及集成网络结构;随后介绍了医学图像分割常用评价指标和非结构化改进方案,这些非结构化改进方法包括数据增强、优化器、激活函数和损失函数四个方面;之后列举并分析了在肺结节、视网膜血管、皮肤病和颅内肿瘤新冠肺炎四大医学图像分割领域的改进模型;最后对U-Net网络的未来发展进行展望,为相关研究提供思路.

With the rapid development of deep learning technology in recent years,convolutional neural network(CNN)has become an important support framework for semantic segmentation and is widely used in a variety of target detection and segmentation tasks.In medical image segmentation tasks,U-Net network has become a hot research topic in this field with its excellent segmentation performance and expandable network structure.Nowadays,many scholars have improved U-Net in terms of the structure of the network to optimize the network performance and improve the segmentation accuracy.The study first introduces the classical improved model based on U-Net by analyzing the relevant literature.Then,six U-Net improvement mechanisms are described:attention mechanism,inception module,residual structure,dilated mechanism,dense connection structure and integrated network structure.Common evaluation metrics and unstructured improvement schemes for medical image segmentation are then presented.These unstructured improvement methods include four aspects of data enhancement,optimizers,activation functions,and loss functions.After that,improved models in four major medical image segmentation areas,namely,pulmonary nodules,retinal vessels,skin diseases and intracranial tumors,are listed and analyzed.Finally,the future development of U-Net network is prospected to provide ideas for related research.

宋杰;刘彩霞;李慧婷

江苏师范大学 智慧教育学院,江苏 徐州 221116江苏师范大学 智慧教育学院,江苏 徐州 221116||江苏师范大学 江苏省教育信息化工程技术研究中心,江苏 徐州 221116

计算机与自动化

医学图像分割深度学习人工智能U-Net卷积神经网络

medical image segmentationdeep learningartificial intelligenceU-Netconvolutional neural network

《计算机技术与发展》 2024 (001)

基于CT影像的计算机辅助肺病诊断教学关键技术研究

9-16 / 8

国家自然科学基金(62007028);江苏师范大学研究生科研与实践创新计划项目(2022XKT1512)

10.3969/j.issn.1673-629X.2024.01.002

评论