|国家科技期刊平台
首页|期刊导航|计算机技术与发展|基于判别性特征增强的小样本细粒度图像识别

基于判别性特征增强的小样本细粒度图像识别OACSTPCD

Few-shot Fine-grained Image Recognition Based on Discriminative Feature Enhancement

中文摘要英文摘要

小样本细粒度图像识别是深度学习领域中一个热门的研究课题,其基本任务是在学习有限数量样本的情况下识别出某一大类下的子类别的图像.得益于卷积神经网络的快速发展,小样本细粒度图像识别在精度方面取得了显著的成果,但其性能仍受限于同一子类图像间的高方差以及不同分类任务中判别性特征的差异性.针对上述问题,提出了一种基于判别性特征增强的小样本细粒度图像识别算法(DFENet).DFENet设计了对称注意力模块来增强类内视觉一致性学习,从而减少背景的影响,提高同类样本之间共享的特征表示的权重.此外,DFENet引入通道维度的判别性特征增强模块,利用支持集样本中同类样本内和不同类样本之间的通道关系进一步挖掘适合于当前任务的判别性特征,以提高识别准确率.在三个经典的细粒度数据集CUB-200-2011,Stanford Dogs,Stanford Cars上进行了广泛的实验.实验结果表明,该方法均取得了有竞争性的结果.

Few-shot fine-grained image recognition is a popular research topic in the field of deep learning.Its basic task is to identify images of subcategories under a super class while learning a limited number of samples.Thanks to the rapid development of convolutional neural networks,the accuracy of few-shot fine-grained image recognition has achieved remarkable results,but its performance is still limited by the high variance among images of the same subclass and the variability of discriminative features in different classification tasks.To address the above problems,we propose a few-shot fine-grained image recognition algorithm(DFENet)based on discriminative feature enhancement.DFENet is designed with a symmetric attention module to enhance intra-class visual consistency learning,thus reducing the influence of background and increasing the weight of feature representations shared among similar samples.In addition,DFENet introduces a discriminative feature enhancement module of channel dimension,and further mines discriminative features suitable for the current task by exploiting the channel relationships within similar samples and between samples of different classes in the support set to improve the recognition accuracy.Extensive experiments are conducted on three classical fine-grained datasets CUB-200-2011,Stanford Dogs,and Stanford Cars.It is showed that the proposed method all achieves competitive results.

齐妍;孙涵

南京航空航天大学 计算机科学与技术学院/人工智能学院,江苏 南京 211106

计算机与自动化

小样本细粒度图像识别深度学习特征增强注意力机制视觉一致性

few-shot fine-grained image recognitiondeep learningfeature enhancementattention mechanismvisual consistency

《计算机技术与发展》 2024 (001)

44-51 / 8

中央高校基本科研业务费专项资金资助项目(NZ2019009)

10.3969/j.issn.1673-629X.2024.01.007

评论