基于改进SURF的增强现实图像匹配方法OACSTPCD
Augmented Reality Image Matching Method Based on Improved SURF
针对传统增强现实图像匹配算法鲁棒性不强且效率不高的问题,提出一种改进的SURF匹配算法.首先,使用SURF算法进行特征点检测,并通过 Haar 小波模板确定特征主方向,在得到特征主方向后构建特征描述符;由于传统SURF算法采用高达64 维的矩形描述符,导致算法的计算量非常大,并且鲁棒性不强.因此,该文使用DAISY圆形描述符替代原始算法中的矩形描述符,DAISY是三层同心圆结构,每层包含8 个采样点,可以得到25 个维度的描述符,这种结构使得算法的鲁棒性大大增强并且降低了计算复杂度;接着,使用特征描述符计算欧氏距离进行特征点匹配;最后,对得到的匹配点集使用随机抽样一致(RANSAC)与三角不规则网络(TIN)算法进行优化,剔除误匹配点.实验结果表明,该算法虽然略微增加了时间复杂度,但鲁棒性变得更强,并且算法的效率和匹配精度也大大提高,平均精度达到了95%以上.
Aiming at the problems of poor robustness and efficiency of traditional augmented reality image matching algorithms,an improved SURF matching algorithm is proposed.Firstly,the SURF algorithm is used to detect the feature points,then the Haar wavelet template is used to determine the main direction of the feature,and then the feature descriptor is constructed after the main direction of the feature is obtained.Because the traditional SURF algorithm uses rectangular descriptors up to 64 dimensions,which is computationally in-tensive and robust.Therefore,the DAISY circle descriptor is used instead of the rectangle descriptor in the original algorithm.DAISY is a three-layer concentric circle structure,each layer contains 8 sampling points,which can obtain 25 dimensional descriptors.This structure greatly enhances the robustness of the algorithm and reduces the computational complexity.Then Euclidean distance is computed using the feature descriptor for feature point matching.Finally,the resulting set of matching points is optimized using random sampling consistency(RANSAC)and triangular irregular network(TIN)to eliminate mismatched points.The experimental results show that the time complexity of the proposed algorithm is slightly increased,the robustness becomes stronger,and the efficiency and matching accuracy of the proposed algorithm are also greatly improved,with the average accuracy reaching more than 95%.
贾一鑫;邓魏永;殷强;毋涛
西安工程大学 计算机科学学院,陕西 西安 710699华宇铮蓥集团,福建 泉州 362801中国纺织工业联合会,北京 100020
计算机与自动化
增强现实图像匹配SURF算法DAISY描述符随机抽样一致三角不规则网络
augmented realityimage matchingSURFDAISY descriptorrandom sample consensustriangular irregular network
《计算机技术与发展》 2024 (001)
59-64 / 6
国家自然科学基金(61806160)
评论