|国家科技期刊平台
首页|期刊导航|岩石矿物学杂志|全球矿床数据库建设现状、应用与展望

全球矿床数据库建设现状、应用与展望OACSTPCD

Review,application and prospect of global mineral deposit databases

中文摘要英文摘要

基于大数据和人工智能技术的数据驱动科学范式推动地球科学研究发生了变革.作为地球科学的重要分支,现代矿床学经历了百余年的发展,已经积累了海量的数据资料,这些数据的流通和共享是发挥其资源价值的关键.文章介绍了中国"地质云"与全球矿产资源储量动态评估数据库、澳大利亚深部地球探测计划AuScope、美国矿产资源在线空间数据库、国际经济地质学家学会(SEG)Geofacets数据库、美国标准普尔公司SNL Metals & Mining数据库等国际主要矿床数据库的情况;同时,列举了应用大数据思维和人工智能方法在区域成矿规律、矿床成因机制、矿床类型判别、资源潜力评价、战略咨询等方面取得的若干重要进展.文章提出,未来在深时数字地球国际大科学计划的平台下,整合全球海量矿床数据,建设开放、共享、统一的矿床大数据平台势在必行.

The data-driven scientific model based on big data and artificial intelligence technology has promoted the transformation of Earth science research.As an important branch of Earth science,modern mineral deposits has accumulated a large amount of data after more than 100 years of development.The flow and sharing of these data is the key to realizing its resource value.In this paper,we introduce databases related to mineral deposits in various countries,such as China's"Geological Cloud"and Global Mineral Resource Reserve Dynamic Assessment Data-base,Australia's Deep Earth Exploration Program AuScope,the United States Mineral Resources Online Spatial Database,Geofaces Database of Society of Economic Geologists(SEG)and the SNL Metals & Mining Database.Meanwhile,we also introduce several important progresses made by applying big data and artificial intelligence methods in regional metallogenic regularity,genetic mechanism of ore deposit,discrimination of deposit type,resource potential evaluation and strategic consultation.This paper puts that it is imperative to integrate global mas-sive data to build an open,shared and unified big data platform for mineral deposits database in the framework of the Deep-time Digital Earth(DDE)Big Science Program.

史蕊;张洪瑞

中国地质科学院地质研究所,北京 100037

矿床数据库大数据深时数字地球

mineral depositdatabasebig dataDeep-time Digital Earth

《岩石矿物学杂志》 2024 (001)

74-88 / 15

中国地质调查局项目(DD20230007);国家自然科学基金项目(42261144669,42273073,42203073);"深时数字地球"(Deep-time Digital Earth,DDE)国际大科学计划 Project of China Geological Survey(DD20230007);National Natural Science Foundation of China(42261144669,42273073,42203073);Deep-time Digital Earth International Big Science Program

10.20086/j.cnki.yskw.2024.0106

评论