|国家科技期刊平台
首页|期刊导航|中国电力|面向虚拟电厂运营的温度敏感负荷分析与演变趋势研判

面向虚拟电厂运营的温度敏感负荷分析与演变趋势研判OACSTPCD

Analysis and Evolution Trend of Temperature-Sensitive Loads for Virtual Power Plant Operation

中文摘要英文摘要

随着极端天气频发,温度敏感负荷用电逐年攀升,温度敏感负荷作为虚拟电厂优质的调控资源,亟须分析气象变化对于此类负荷的影响,由于叠加极端高温、大规模寒潮等异常天气的影响,温度敏感负荷波动剧烈,常规分析预测方法难以适应极端气象场景.针对寒潮天气下温度敏感负荷样本数据及预测精度不足的问题,提出寒潮天气小样本条件下的温度敏感负荷日最大负荷预测方法.该方法先采用时序对抗生成网络(TimeGAN)扩充寒潮期间小样本数据,再采用卷积-长短时记忆神经网络(CNN-LSTM)对寒潮期间的日最大负荷进行预测.以国内某省近两年迎峰度冬期间数据进行模型验证,结果表明所提模型优于其他模型的预测结果,在验证集上日最大负荷的预测精度为99.5%.

With the frequent occurrence of extreme weather,the electricity consumption of temperature-sensitive loads is increasing year by year.As a high-quality regulation resource of virtual power plant(VPP),temperature-sensitive loads urgently need to be analyzed for the impact of meteorological changes on them.Due to the influence of abnormal weather such as extreme high temperature and large-scale cold waves,temperature-sensitive loads fluctuate violently.Conventional analysis and prediction methods are not adaptable to the extreme meteorological scenarios.Aiming at the problem of insufficient sample data and prediction accuracy of temperature-sensitive loads under cold wave weather,this paper proposes a daily maximum load prediction method for temperature-sensitive loads under the condition of small sample in cold wave weather.In this method,the TimeGAN is used to expand the small sample data during the cold wave period,and then the CNN-LSTM network is used to predict the daily maximum load during the cold wave period.Finally,the model is verified by the load data of a province in China during the winter period in the past two years.The results show that the prediction results of the proposed model are better than those of other models,with the prediction accuracy of the daily maximum load on the verification set being 99.5%.

周颖;白雪峰;王阳;邱敏;孙冲;武亚杰;李彬

需求侧多能互补优化与供需互动技术北京市重点实验室(中国电力科学研究院有限公司),北京 100192华北电力大学电气与电子工程学院,北京 102206国家电网有限公司,北京 100031国网河北省电力有限公司营销服务中心,河北石家庄 050081

温度敏感负荷预测寒潮时间序列生成对抗网络虚拟电厂卷积神经网络长短时记忆神经网络

temperature sensitive load forecastingcold wavetime series generative adversarial networkvirtual power plantconvolutional neural networklong short-term memory neural network

《中国电力》 2024 (001)

9-17 / 9

国家电网有限公司科技项目(支撑重过载台区治理的区域供用电综合预测与智能预警技术研究与应用,5108-202218280A-2-379-XG).This work is supported by Science and Technology Project of SGCC(Regional Power Supply and Consumption Comprehensive Pre-Treatment Supporting Heavy Overload Station Area Governance,No.5108-202218280A-2-379-XG).

10.11930/j.issn.1004-9649.202307100

评论