基于IMMKF算法的ADS-B监视应用目标跟踪OA北大核心CSTPCD
目标跟踪是机载广播式自动相关监视(ADS-B)应用的基础功能,对提升航空器周边的弱机动民航飞机目标跟踪性能具有重要意义。提出一种基于交互式多模型卡尔曼滤波(IMMKF)算法的ADS-B监视应用目标跟踪方法。首先,针对弱机动背景下的民航飞机的飞行特点,建立包含匀速模型和标准协同转弯模型的运动模型集,并对模型进行线性化近似;然后,将模型预测和ADS-B状态矢量量测数据作为IMMKF算法中多个并行卡尔曼滤波器的输入,进行并行滤波;最后,计算得到目标状态矢量的估计和模型近似概率,并作为下一次迭代的输入。结果表明:相比于基于匀速模型的卡尔曼滤波目标跟踪方法,IMMKF算法的位置跟踪误差降低了59%,速度跟踪误差降低了77%,显著提升了状态估计性能,具备较高的跟踪精度、稳健性与计算效率,在ADS-B监视应用中具有实际应用价值与借鉴意义。
刘通;王飞;严忠平;
中国航空工业集团有限公司雷华电子技术研究所,无锡214063
广播式自动相关监视交互式多模型卡尔曼滤波目标跟踪协同转弯状态估计
《航空工程进展》 2024 (001)
P.182-190 / 9
国家重点研发计划(2021YFB1600600)。
评论