| 注册
首页|期刊导航|计算机工程与应用|视频文本跨模态检索研究综述

视频文本跨模态检索研究综述

陈磊 习怡萌 刘立波

计算机工程与应用2024,Vol.60Issue(4):1-20,20.
计算机工程与应用2024,Vol.60Issue(4):1-20,20.DOI:10.3778/j.issn.1002-8331.2306-0382

视频文本跨模态检索研究综述

Survey on Video-Text Cross-Modal Retrieval

陈磊 1习怡萌 1刘立波1

作者信息

  • 1. 宁夏大学 信息工程学院,银川 750021
  • 折叠

摘要

Abstract

Modalities define the specific forms in which data exist.The swift expansion of various modal data types has brought multimodal learning into the limelight.As a crucial subset of this field,cross-modal retrieval has achieved noteworthy advancements,particularly in integrating images and text.However,videos,as opposed to images,encapsulate a richer array of modal data and offer a more extensive spectrum of information.This rich-ness aligns well with the growing user demand for comprehensive and adaptable information retrieval solutions.Consequently,video-text cross-modal retrieval has emerged as a burgeoning area of research in recent times.To thor-oughly comprehend video-text cross-modal retrieval and its state-of-the-art developments,a methodical review and summarization of the existing representative methods is conducted.Initially,the focus is on analyzing current deep learning-based unidirectional and bidirectional video-text cross-modal retrieval methods.This analysis includes an in-depth exploration of seminal works within each category,highlighting their strengths and weaknesses.Subse-quently,the discussion shifts to an experimental viewpoint,introducing benchmark datasets and evaluation met-rics specific to video-text cross-modal retrieval.The performance of several standard methods in benchmark data-sets is compared.Finally,the application prospects and future research challenges of video-text cross-modal retrieval are discussed.

关键词

多模态/跨模态检索/深度学习/特征提取

Key words

multi-modality/cross-modal retrieval/deep learning/feature extraction

分类

信息技术与安全科学

引用本文复制引用

陈磊,习怡萌,刘立波..视频文本跨模态检索研究综述[J].计算机工程与应用,2024,60(4):1-20,20.

基金项目

国家自然科学基金(62262053) (62262053)

宁夏科技创新领军人才资助项目(2022GKLRLX03) (2022GKLRLX03)

宁夏大学研究生创新项目(CXXM202357). (CXXM202357)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文