|国家科技期刊平台
首页|期刊导航|航空科学技术|基于流—固—热耦合的高温伺服阀蛇形流道散热罩散热效率研究

基于流—固—热耦合的高温伺服阀蛇形流道散热罩散热效率研究OA

Research on Heat Dissipation Efficiency of Serpentine Flow Channel Heat Dissipation Hood for Hing-temperature Servo Valve Based on Fluid-solid-hermal Coupling

中文摘要英文摘要

电液伺服系统具有液控负载大、响应快的特点,因此其被广泛应用于航空领域.由于飞行器处于高温工况时,电液伺服系统会受极大影响,不利于飞行器的正常工作.针对这一问题,本文采用流—固—热多场耦合的方法对高温伺服阀散热罩蛇形流道进行了优化研究.首先,介绍了流—固—热三场耦合的理论基础,设计了7种散热罩的结构参数模型,分别建立了散热罩物理模型及流体模型.其次,在此基础上分析了7种模型的散热效果.研究结果表明,增加流道条数并不能提升散热效率,而增加散热罩沟槽宽度和沟槽深度可以提高散热效率,但散热效果并不明显.如要达到散热要求,可以通过增大散热流体流量、降低散热流体温度来实现.

Electro-hydraulic servo systems are widely used in the field of aviation because they are characterized by large hydraulic loads and fast response.When the aircraft is in high temperature working condition,the electro-hydraulic servo system will be greatly affected,which is not conducive to the normal operation of the aircraft.In order to address this problem,this paper adopts the method of fluid-solid-thermal multi-field coupling to optimize the serpentine flow path of high-temperature servo valve heat sink.First of all,this paper introduces the theoretical basis of fluid-solid-heat three-field coupling.Then,seven heat sink models are designed in this paper,and the physical model and fluid model of the heat sink are established respectively.Finally,the heat dissipation effects of the seven models are analyzed on this basis.The results show that increasing the number of runner bars does not improve the heat dissipation efficiency,while increasing the heat sink groove width and groove depth can improve the heat dissipation efficiency,but the heat dissipation effect is not obvious.If the heat dissipation requirement is to be achieved,it can be realized by increasing the flow rate and decreasing the fluid temperature.

徐铭谦;张健;李佳洋

东北林业大学,黑龙江 哈尔滨 150040哈尔滨工业大学,黑龙江 哈尔滨 150001

电液伺服阀高温工况散热罩流—固—热三场耦合散热效率

electro-hydraulic servo valveshigh-temperature operating conditionsheat shieldfluid-solid-thermal three-field couplingheat dissipation efficiency

《航空科学技术》 2024 (002)

基于气泡动力学的液压气穴发光机理及气穴噪声研究

81-91 / 11

国家自然科学基金(51805108);航空科学基金(20200007077002);黑龙江省重点研发计划(GZ20220097);哈尔滨市制造业科技创新人才项目(CXRC20221104079);中央高校基本科研业务费专项资金(2572022BF02)National Natural Science Foundation of China(51805108);Aeronautical Science Foundation of China(20200007077002);Key Research and Development Project of Heilongjiang Province(GZ20220097);Harbin Manufacturing Tech-nology Innovation Talent Project(CXRC20221104079);Special Fund for Basic Research Expenses of Central Universities(2572022BF02)

10.19452/j.issn1007-5453.2024.02.010

评论