| 注册
首页|期刊导航|电力科技与环保|基于直接吸收光谱深度学习神经网络模型的CO2浓度检测研究

基于直接吸收光谱深度学习神经网络模型的CO2浓度检测研究

史文辉 李凯亮 宫廷 田亚莉 孙小聪 郭古青 邱选兵 李传亮

电力科技与环保2024,Vol.40Issue(1):44-52,9.
电力科技与环保2024,Vol.40Issue(1):44-52,9.DOI:10.19944/j.eplep.1674-8069.2024.01.006

基于直接吸收光谱深度学习神经网络模型的CO2浓度检测研究

Research on CO2 concentration detection based on deep learning neural net-work model of direct absorption spectroscopy

史文辉 1李凯亮 1宫廷 1田亚莉 1孙小聪 1郭古青 1邱选兵 1李传亮1

作者信息

  • 1. 山西省精密测量与在线检测装备工程研究中心,山西省光场调控与融合应用技术创新中心,太原科技大学应用科学学院,山西 太原 030024
  • 折叠

摘要

Abstract

Carbon dioxide(CO2)is a principal component of greenhouse gases,significantly impacting global climate change and environmental quality.Coal-fired power plants,being the largest source of CO2 emissions in China,face se-vere challenges.Therefore,to accurately,rapidly,and cost-effectively monitor the CO2concentration in coal-fired power plants and promote their low-carbon development,this paper utilizes a distributed feedback semiconductor laser to con-struct a high-sensitivity CO2 gas detection system.It also validates and employs the HITRAN database as the dataset for a deep learning model,establishes a one-dimensional convolutional neural network(1D-CNN)model,and a back-propagation neural network for CO2 concentration detection.These models are compared with direct absorption spec-troscopy technique,and the performance of the 1D-CNN model is enhanced through K-fold cross-validation and parame-ter adjustment.The results show that the determination coefficient(R2)of the 1D-CNN model can reach 0.9997,with a relative error of 1.07%and an absolute error of 7.88 mg/m3,indicating the model's suitability.By utilizing the optimal pa-rameters of the 1D-CNN model,a comparison between predicted and actual data reveals an average relative error of 6.06%,an average absolute error of 17.97 mg/m3,and an R2 of 0.99941,demonstrating high accuracy in the model's predictions.This gas concentration detection model based on direct absorption spectroscopy and a deep learning neural network exhibits high accuracy and reliability in measuring CO2concentrations,offering robust technical support for envi-ronmental monitoring and energy conservation and emission reduction within the power industry.

关键词

燃煤电厂/碳排放/深度学习/吸收光谱/CO2/HITRAN数据库

Key words

coal fired power plants/carbon emissions/deep learning/tunable diode laser absorption spectroscopy/ar-bon dioxide/HITRAN database

分类

能源科技

引用本文复制引用

史文辉,李凯亮,宫廷,田亚莉,孙小聪,郭古青,邱选兵,李传亮..基于直接吸收光谱深度学习神经网络模型的CO2浓度检测研究[J].电力科技与环保,2024,40(1):44-52,9.

基金项目

国家重点研发计划(2023YFF0718100) (2023YFF0718100)

国家自然科学基金(52076145&12304403) (52076145&12304403)

山西省留学人员科技活动项目(20230031) (20230031)

山西省省筹资金资助回国留学人员科研资助项目(2023-151) (2023-151)

山西省基础研究计划(202203021222204&202303021212224) (202203021222204&202303021212224)

太原科技大学科研启动基金(20222121&20232033) (20222121&20232033)

电力科技与环保

1674-8069

访问量0
|
下载量0
段落导航相关论文