| 注册
首页|期刊导航|电气技术|基于软阈值降噪的脉冲卷积神经网络轴承故障诊断方法

基于软阈值降噪的脉冲卷积神经网络轴承故障诊断方法

李浩 黄晓峰 邹豪杰 孙英杰

电气技术2024,Vol.25Issue(2):12-20,9.
电气技术2024,Vol.25Issue(2):12-20,9.

基于软阈值降噪的脉冲卷积神经网络轴承故障诊断方法

Bearing fault diagnosis method based on soft threshold denoising for spiking convolutional neural network

李浩 1黄晓峰 1邹豪杰 2孙英杰1

作者信息

  • 1. 湖南工业大学轨道交通学院,湖南 株洲 412007
  • 2. 湖南工业大学计算机学院,湖南 株洲 412007
  • 折叠

摘要

Abstract

The signals of rolling bearings are easily interfered by noise in industrial environments,which reduces fault diagnosis accuracy and worsens stability.This paper proposes a diagnostic method based on soft threshold denoising for spiking convolutional neural network.Soft threshold filtering for noise reduction is proposed in this paper.This paper uses time-tagged convolutional layers to process two-dimensional signals to enhance dynamic feature extraction capabilities.IF and LIF neurons are introduced to jointly encode time domain and frequency domain information,and the surrogate gradient method is used for end-to-end training.The results show that the diagnostic accuracy reaches 100%under the signal-to-noise ratio of 6dB,and still reaches 77.33%under the signal-to-noise ratio of-6dB.The results of this method have certain advantages compared with commonly used methods,which verifies that the proposed method has better diagnostic results and higher stability under noise.

关键词

故障诊断/软阈值/脉冲神经网络(SNN)/替代梯度法

Key words

fault diagnosis/soft threshold/spiking neural network(SNN)/surrogate gradient method

引用本文复制引用

李浩,黄晓峰,邹豪杰,孙英杰..基于软阈值降噪的脉冲卷积神经网络轴承故障诊断方法[J].电气技术,2024,25(2):12-20,9.

基金项目

湖南省自然科学基金(2022JJ50088、2023JJ50198) (2022JJ50088、2023JJ50198)

电气技术

1673-3800

访问量0
|
下载量0
段落导航相关论文