| 注册
首页|期刊导航|计算机工程|基于多级残差信息蒸馏的真实图像去噪方法

基于多级残差信息蒸馏的真实图像去噪方法

冯妍舟 刘建霞 王海翼 冯国昊 白宇

计算机工程2024,Vol.50Issue(3):216-223,8.
计算机工程2024,Vol.50Issue(3):216-223,8.DOI:10.19678/j.issn.1000-3428.0067503

基于多级残差信息蒸馏的真实图像去噪方法

Real Image Denoising Method Based on Multi-Level Residual Information Distillation

冯妍舟 1刘建霞 1王海翼 1冯国昊 1白宇1

作者信息

  • 1. 太原理工大学电子信息与光学工程学院,山西 晋中 030600
  • 折叠

摘要

Abstract

Deep neural networks have a strong denoising ability for real images and can learn complex nonlinear mapping relationships between noisy and clean images.However,excessive convolution operations result in increased computational costs and occupy a large amount of memory,limiting the application of denoising techniques in low computing power devices.Existing denoising algorithms are prone to damaging detail information,and restoring images may suffer from problems such as excessively smooth edges,missing textures,and residual noise.To address these issues,construct a Multi-level Residual Information Distillation Block(MRIDB)is constructed in this study.By segmenting feature channels,retaining some features for subsequent multi-level fusion,and further extracting refined feature information through depth extraction units.It introduces a Contrast-aware Channel Attention(CCA)mechanism to assign weights to features of different channels.It uses multi-level skip connections to fully integrate contextual information extracted from different stages.It builds a lightweight Multi-level Residual Information Distillation Network(MIRDN)using a low inter-block complexity encoding-decoding structure.The encoding part is a noisy image feature extraction module,and whereas the decoding part is a clean image restoration module.In order to accelerate the training speed,a progressive training method with mixed image sizes is adopted.The experimental results show demonstrate that the Peak Signal-to-Noise Ratios(PSNR)of the proposed method on SSID and DND real image datasets are 39.43 dB and 39.49 dB,respectively.These are improvements in the ranges of 0.17-15.77 dB and 0.02-7.06 dB,respectively,compared with other networks,while and the model parameter count is only 6.92×106.The proposed model has fewer parameters while improving denoising performance.

关键词

图像复原/真实图像去噪/多级残差信息蒸馏模块/深度提取模块/对比度感知通道注意力

Key words

image restoration/real image denoising/Multi-level Residual Information Distillation Block(MRIDB)/Deep Extraction Module(DEM)/Contrast-aware Channel Attention(CCA)

分类

信息技术与安全科学

引用本文复制引用

冯妍舟,刘建霞,王海翼,冯国昊,白宇..基于多级残差信息蒸馏的真实图像去噪方法[J].计算机工程,2024,50(3):216-223,8.

基金项目

山西省重点研发计划(2022ZDYF088) (2022ZDYF088)

山西省回国留学人员科研资助项目(HGKY2019040) (HGKY2019040)

太原理工大学研究生精品课程(2021KC08). (2021KC08)

计算机工程

OA北大核心CSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文