|国家科技期刊平台
首页|期刊导航|机电工程技术|基于亮度均衡化和仿射变换的交通标志图像修复研究

基于亮度均衡化和仿射变换的交通标志图像修复研究OA

Research on Traffic Sign Image Restoration Based on Luminance Equalization and Affine Transformation

中文摘要英文摘要

自动驾驶技术是当前人工智能的研究热点,其中交通标志的正确识别是机器的重要判断依据,但是在自然场景中交通标志图像具有颜色偏差、形状变形、遮挡等一系列问题,导致识别不准确.对于这个问题,提出了亮度均衡化和仿射变化的方法,首先采用HSV颜色空间,提取对应的颜色,再针对亮度信息进行直方图均衡化方法,解决颜色偏差问题,随后使用仿射变换,分别对三角形和圆形的图像进行形状的矫正,并实现背景的去除.实验部分采用占用机器资源较低的HOG+SVM检测方法进行检测,结果表明,和传统的方法相比,该方法在识别率上有20%左右的提升.由此证明,对交通标志图像进行有针对性的修复,对于识别率的提高有着比较大的意义,因为其占用机器资源较低,也给当前深度学习等占用机器资源较多的交通标志识别方法提供了新的思路.

Autonomous driving technology is the current research hotspot of artificial intelligence,in which the correct recognition of traffic signs is an important judgment basis for machines,but traffic sign images in natural scenes have a series of problems such as color deviation,shape deformation and occlusion,resulting in inaccurate recognition.For this problem,a method of brightness equalization and affine change is proposed,first using HSV color space,extracting the corresponding color,and then histogram equalization method for luminance information to solve the problem of color deviation.Subsequently,affine transformation is used to correct the shape of the triangle and circle images respectively,and to remove the background.The experimental part uses HOG+SVM detection method with low machine resource consumption for detection,and the results show that compared with traditional methods,this method has an improvement of about 20%in recognition rate.This proves that targeted restoration of traffic sign images has significant implications for improving recognition rates,as it consumes less machine resources and provides new ideas for current traffic sign recognition methods such as deep learning that consume more machine resources.

廖干洲;曾霞

广州应用科技学院,广州 511300

计算机与自动化

HSV颜色空间直方图均衡化仿射变换

HSV color spacehistogram equalizationaffine transformation

《机电工程技术》 2024 (002)

212-216 / 5

2020年广东高校省级重点平台和重大科研项目(2020KTSCX197);广州应用科技学院 2022年度校级教学质量与教学改革工程项目(2022ZG008)

10.3969/j.issn.1009-9492.2024.02.046

评论