| 注册
首页|期刊导航|空气动力学学报|基于粒子图像分割的混合PIV-PTV算法

基于粒子图像分割的混合PIV-PTV算法

李拓 张清福 潘翀 陈爽 申俊琦 王宏伟 李晓辉 黄湛 王晋军

空气动力学学报2024,Vol.42Issue(2):68-75,8.
空气动力学学报2024,Vol.42Issue(2):68-75,8.DOI:10.7638/kqdlxxb-2023.0031

基于粒子图像分割的混合PIV-PTV算法

Hybrid PIV-PTV algorithm based on particle image segmentation

李拓 1张清福 1潘翀 2陈爽 3申俊琦 3王宏伟 4李晓辉 4黄湛 4王晋军1

作者信息

  • 1. 北京航空航天大学 流体力学教育部重点实验室,北京 100191
  • 2. 北京航空航天大学 流体力学教育部重点实验室,北京 100191||北京航空航天大学宁波创新研究院 先进飞行器与空天动力创新研究中心, 宁波 315800
  • 3. 中国空气动力研究与发展中心 设备设计与测试技术研究所, 绵阳 621000
  • 4. 中国航天空气动力技术研究院, 北京 100074
  • 折叠

摘要

Abstract

Particle image velocimetry(PIV)has become a major measurement tool in the field of aerodynamics due to its characteristic of non-intrusive field measurement.The velocity field distribution of complex flows is often non-uniform and it is difficult to uniformly seed tracer particles,which makes accurate PIV measurements difficult.Therefore,when applying the PIV cross-correlation algorithm to deal with the particle-sparse area,it is necessary to use a larger query window to reduce the uncertainty of measurement,at expense of low spatial resolution.On the other hand,particle tracking velocimetry(PTV)tracks the cross-frame displacement of a single tracer particle,which has a higher spatial resolution than PIV,but it is difficult to apply it to dense areas with high particle concentrations.To solve this problem,a hybrid PIV-PTV velocity measurement technique based on particle image segmentation is developed.Firstly,the local concentration field of the tracer particles is calculated,which is based on the Voronoi polygon.Then the particles are binary classified by the set concentration threshold,and the support vector machine based on Gaussian kernel function is used to find the optimal classification boundary,so as to realize the division of the particle dense area and sparse area of the particle image.Finally,both PIV and PTV were used to calculate the velocity fields in the two regions respectively,and the two results were combined into a complete output of the velocity field.The results show that the above method can automatically divide the particle sparse and dense regions in the particle image,and can effectively improve the spatial resolution of the velocity field measurement.When the method is applied the near-wall measurement of the turbulent boundary layer at Mach 6,it effectively overcomes the problem that the tracer particles are difficult to enter the near-wall region of the boundary layer due to the strong shear of high speed flow,and significantly improve the analytical ability of the near-wall flow.

关键词

粒子图像测速/混合PIV-PTV/粒子图像分割/支持向量机/维诺多边形

Key words

particle image velocimetry/hybrid PIV-PTV/particle image segmentation/support vector machines/Voronoi polygons

分类

航空航天

引用本文复制引用

李拓,张清福,潘翀,陈爽,申俊琦,王宏伟,李晓辉,黄湛,王晋军..基于粒子图像分割的混合PIV-PTV算法[J].空气动力学学报,2024,42(2):68-75,8.

基金项目

国家自然科学基金(61935008,91952301) (61935008,91952301)

国家重点研发计划(2020YFA0405700) (2020YFA0405700)

空气动力学学报

OA北大核心CSTPCD

0258-1825

访问量6
|
下载量0
段落导航相关论文