|国家科技期刊平台
首页|期刊导航|水科学进展|基于深度学习的点云分割与洪水风险模拟方法

基于深度学习的点云分割与洪水风险模拟方法OA北大核心CSTPCD

Point clouds segmentation and flood risk simulation method based on deep learning

中文摘要英文摘要

传统的洪水风险分析方法由于计算时长、数据不足和难以适应地形变化等,限制其在快速应急响应中的应用,亟需对大场景洪水进行快速预测建模与分析.本文推出一种融合大场景点云分割与深度学习的洪水风险快速模拟方法,通过数据采集与预处理、点云分割、重建数字高程模型和水动力学模拟,在中国南水北调工程的局部地区进行实证研究.结果表明,提取原始地面特征的平均交并比和总体分类精度分别高达70.8%和88.7%,洪水模拟设计与校核情景下的最大淹没面积分别为7.0万m2和10.5万m2.该方法为洪水风险快速评估提供了新方法,可提高洪水风险测绘的建模效率和分析精度.

The efficacy of conventional flood risk assessment methods is curtailed by extensive computational requirements,insufficient data,and difficulty in adapting to terrain changes,thereby it is urgent to quickly model and analyze flood in large scenarios.This research delineates an innovative technique that amalgamates expansive LiDAR point clouds segmentation with deep learning to expedite flood risk simulation.Our comprehensive procedural framework is comprised of data acquisition and preprocessing,sophisticated point cloud segmentation,Digital Elevation Model(DEM)reconstruction,and hydrodynamic simulation.It has been applied specifically to model flood scenarios within a designated section of China's South-to-North Water Diversion Project.The empirical results underscore the proficiency of this method,with an mean Intersection over Union reaching 70.8%and an overall classification accuracy attaining 88.7%for the extraction of intrinsic terrain features.The method accurately projects maximum flood inundation extents of 7.0 × 104 m2 and 10.5 × 104 m2 for the respective design and check flood simulation scenarios.This approach provides a paradigm shift in rapid flood risk assessment,markedly advancing the modeling efficiency and analysis precision in flood risk management.

姜佩奇;伍杰;张社荣;来亦姝;刘康;王超

天津大学水利工程智能建设与运维全国重点实验室,天津 300072||天津大学建筑工程学院,天津 300072||水利部水利水电规划设计总院,北京 100120水利部水利水电规划设计总院,北京 100120天津大学水利工程智能建设与运维全国重点实验室,天津 300072||天津大学建筑工程学院,天津 300072

水利科学

洪水风险点云分割深度学习DEM重建水动力学模拟

flood riskpoint clouds segmentationdeep learningDEM reconstructionhydrodynamics simulation

《水科学进展》 2024 (001)

62-73 / 12

国家重点研发计划资助项目(2022YFC3200212);水利部重大科技项目(SKS-2022133)The study is financially supported by the National Key R&D Program of China(No.2022YFC3200212)and Major Science and Technology Projects of the Ministry of Water Resources of China(No.SKS-2022133).

10.14042/j.cnki.32.1309.2024.01.006

评论