气候变化背景下融合社交媒体情感与多源数据的洪涝损失估算OA北大核心CSTPCD
Flood loss estimation by integrating social media sentiment and multi-source data under climate change background
提取2021年7月10日—2023年4月10日新浪微博的洪涝灾害文本,基于朴素贝叶斯算法实现暴雨洪涝情感分析,构建了一种融合核心致灾因子、承灾载体和社交媒体实时数据的洪涝灾损估算(ISFRD)模型.结果表明:在社交媒体中,暴雨洪涝灾害的情感峰值主要集中在 6-8 月,峰值变化和洪涝灾害热点事件讨论具有强同步关系;洪灾期间情感波动变化,洪涝损失与平均情感值具有反向关系;ISFRD洪涝灾损模型可以有效评估省(市)级尺度、不同受灾程度的暴雨洪涝事件,估算结果精度较高(平均准确率>90%,MAE=27.04,RMSE=45.26).在日益复杂的气候环境下,该模型可为洪涝灾损快速厘定、防灾减灾和舆论引导提供一定参考.
Based on social media text data,the flood loss estimation model(ISFRD)was constructed that combines the core factors causing flooding,disaster-bearing vectors and real-time sentiment data.First,text information related to flooding on the Sina Weibo platform was extracted based on natural language processing technology to achieve data preprocessing.Geolocation enrichment was then performed and the validity of the Weibo data was verified using the example of the exceptionally heavy rainfall in Henan province.Afterwards,loss estimation was made for several flood events in China based on a multi-source set of factors such as flood causation and sentiment,and the accuracy of the loss estimation was verified against the actual losses.The results are as follows.(1)In social media,the peak sentiment mutation points of heavy rainfall and flooding are mainly concentrated in June to August each year.Also,the peak sentiment change and the discussion of hot flood events have a strong synchronous relationship.(2)Flood losses have an inverse relationship with average sentiment,i.e.,the lower the average sentiment value is,the more serious the disaster damage is in general.(3)The ISFRD flood damage model can effectively assess heavy rainfall and flooding events at the provincial(municipal)scale with different degrees of damage,and the estimation results have high accuracy(average accuracy>90%,MAE=27.04,RMSE=45.26).Under the increasingly complex climate environment,the model can provide a certain reference for rapid determination of flood damage,disaster prevention and mitigation,and public opinion guidance.
武志霞;郑霞忠;陈一君;黄山;胡文莉;段晨斐
三峡大学水电工程施工与管理湖北省重点实验室,宜昌 443002||三峡大学水利与环境学院,宜昌 443002||四川轻化工大学管理学院,自贡 643000三峡大学水电工程施工与管理湖北省重点实验室,宜昌 443002||三峡大学水利与环境学院,宜昌 443002四川轻化工大学管理学院,自贡 643000宜宾市翠屏区市政建设工程中心,宜宾 644000
社交媒体情感分析多源数据ISFRD模型灾损估算
Social mediaSentiment analysisMulti-source dataISFRD modelLoss estimation
《气候变化研究进展》 2024 (001)
26-36 / 11
国家自然科学基金面上项目(51878385);成渝地区双城经济圈川南发展研究院项目(CYQCNY20223);川酒发展研究中心项目(CJY23-12)
评论