| 注册
首页|期刊导航|China Foundry|Data-driven casting defect prediction model for sand casting based on random forest classification algorithm

Data-driven casting defect prediction model for sand casting based on random forest classification algorithm

Bang Guan Dong-hong Wang Da Shu Shou-qin Zhu Xiao-yuan Ji Bao-de Sun

China Foundry2024,Vol.21Issue(2):P.137-146,10.
China Foundry2024,Vol.21Issue(2):P.137-146,10.DOI:10.1007/s41230-024-3090-1

Data-driven casting defect prediction model for sand casting based on random forest classification algorithm

Bang Guan 1Dong-hong Wang 2Da Shu 2Shou-qin Zhu 3Xiao-yuan Ji 4Bao-de Sun2

作者信息

  • 1. Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming,School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China
  • 2. Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming,School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China State Key Lab of Metal Matrix Composites,Shanghai Jiao Tong University,Shanghai 200240,China
  • 3. Hefei Casting and Forging Factory of Anhui Heli Co.,Ltd,Hefei 230000,China
  • 4. State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,Wuhan 430074,China
  • 折叠

摘要

关键词

sand casting process/data-driven method/classification model/quality prediction/feature importance

分类

信息技术与安全科学

引用本文复制引用

Bang Guan,Dong-hong Wang,Da Shu,Shou-qin Zhu,Xiao-yuan Ji,Bao-de Sun..Data-driven casting defect prediction model for sand casting based on random forest classification algorithm[J].China Foundry,2024,21(2):P.137-146,10.

基金项目

financially supported by the National Key Research and Development Program of China(2022YFB3706800,2020YFB1710100) (2022YFB3706800,2020YFB1710100)

the National Natural Science Foundation of China(51821001,52090042,52074183)。 (51821001,52090042,52074183)

China Foundry

OACSTPCDEI

1672-6421

访问量0
|
下载量0
段落导航相关论文