| 注册
首页|期刊导航|华中科技大学学报(自然科学版)|基于持续同调的高维数据聚类算法

基于持续同调的高维数据聚类算法

熊正大 韦逸卓 熊子恒 何琨

华中科技大学学报(自然科学版)2024,Vol.52Issue(2):29-35,7.
华中科技大学学报(自然科学版)2024,Vol.52Issue(2):29-35,7.DOI:10.13245/j.hust.240202

基于持续同调的高维数据聚类算法

Persistent homology based clustering algorithm for high-dimensional data

熊正大 1韦逸卓 1熊子恒 2何琨1

作者信息

  • 1. 华中科技大学计算机科学与技术学院,湖北 武汉 430074
  • 2. 武汉科技大学香涛学院,湖北 武汉 430081
  • 折叠

摘要

Abstract

A new clustering algorithm called persistent homology based clustering(PHBC)was proposed for high-dimensional data.The data was processed through the perspective of topology,and the topological features of different types of samples were calculated by using the simple complex forms.The topological features were recorded as persistent homology information,and the persistent homology information was converted into vector form,which was used as the input of the clustering algorithm.In this way,the clustering algorithm can process high-dimensional data after preprocessing.Experimental results show that the PHBC algorithm can handle various complex high-dimensional data.Compared with several typical clustering algorithms,PHBC can improve the clustering performance considerably as evaluated by a variety of clustering metrics.Also,the standard deviation of these metrics is smaller,indicating a more stable output of PHBC.

关键词

机器学习/聚类/高维数据/拓扑数据分析/持续同调

Key words

machine learning/clustering/high-dimensional data/topological data analysis/persistent homology

分类

信息技术与安全科学

引用本文复制引用

熊正大,韦逸卓,熊子恒,何琨..基于持续同调的高维数据聚类算法[J].华中科技大学学报(自然科学版),2024,52(2):29-35,7.

基金项目

国家自然科学基金资助项目(61772219). (61772219)

华中科技大学学报(自然科学版)

OA北大核心CSTPCD

1671-4512

访问量0
|
下载量0
段落导航相关论文