|国家科技期刊平台
首页|期刊导航|电器与能效管理技术|基于鲸鱼优化算法改进随机森林的电弧故障检测方法

基于鲸鱼优化算法改进随机森林的电弧故障检测方法OA

Arc Fault Detection Method Based on Whale Optimization Algorithm to Improve Random Forest

中文摘要英文摘要

基于电器种类繁多,不同电器发生电弧故障时电流波形相似难以检测,容易引起保护的误动和拒动,提出基于鲸鱼优化算法(WOA)改进随机森林(RF)的电弧故障检测方法.按照GB 14287.4-2014,设计并搭建了故障电弧实验平台,采集故障电弧信号,提取特征值,引入改进WOA对RF进行参数智能优化并求解.对比经典RF算法实验结果,共收集7种负载组合320组正常、故障数据进行实验,实验结果表明优化模型的识别效果优于经典RF算法,可以有效地诊断电弧故障.

Based on the wide variety of appliances,it is difficult to detect similar current waveforms when different appliances experience a fault arc,which can easily lead to misoperation and rejection of protection.A arc fault detection method based on whale optimization algorithm(WOA)to improve random forest(RF)algorithm is proposed.According to the national standard GB14287.4-2014,a arc fault experimental platform is independently designed and built to collect fault arc signals and extract feature values.Introducing an improved WOA to intelligently optimize and solve RF parameters.Comparing the experimental results of the classical random forest algorithm,a total of 320 sets of normal fault data from seven load combinations are collected for experiments.The experimental results show that the recognition effect of the optimized model is better than that of the classical random forest algorithm,and it can effectively diagnose arcs fault.

朱海

现代电力系统仿真与控制与可再生能源技术教育部重点实验室(东北电力大学),吉林吉林 132000

动力与电气工程

电弧故障鲸鱼优化算法特征提取改进随机森林

arc faultwhale optimization algorithm(WOA)feature extractionimproved random forest

《电器与能效管理技术》 2024 (002)

21-27,55 / 8

《基于功率平衡和区域惯量分布的高渗透率新能源电网自适应失步解列方法研究》(20220101252JC)

10.16628/j.cnki.2095-8188.2024.02.004

评论