一种基于IGA的融合点云和影像的建筑物提取方法OA北大核心CSTPCD
A building extraction method based on IGA that fuses point cloud and image data
针对精细化实景三维建筑物建模,提出一种基于改进遗传算法(IGA)的建筑物LiDAR点云与正射影像融合提取方法:计算并提取基于点云和影像的特征,实现点云特征空间的扩张;再改进遗传算法选择点云特征,构建并优化特征空间;最后使用SVM分类器实现建筑物点云的精准提取.在ISPRS公开数据集Vaihingen测试数据的试验表明本文方法具有较高的建筑物提取精度;在实际生产数据的实验表明建筑物提取精度较高且稳定,证明了本文方法的先进性和普适性.
This paper proposes a method for extracting building LiDAR point cloud and orthophoto fusion based on im-proved genetic algorithm(IGA)for fine-grained 3D building modeling:The features based on point cloud and image are calculated and extracted to expand the feature space of point cloud;then,by using the improved genetic algorithm,the point cloud features are selected,construct and optimize feature space;finally,SVM classifier is used to achieve ac-curate extraction of building point cloud.The experimental results on ISPRS open data set Vaihingen test data show that the method proposed in this paper has high accuracy in building extraction.The experimental results on actual produc-tion data show that the building extraction accuracy is high and stable,which proves the advancement and universality of this method.
赖旭东;骈蔚然;薄立明;何丽华
武汉大学 遥感信息工程学院,湖北 武汉 430079武汉大学 中国发展与战略规划研究院,湖北 武汉 430079湖北省地理国情监测中心,湖北 武汉 430000
测绘与仪器
遥感信息工程LiDAR点云特征选择建筑物提取
remote sensing and information engineeringLiDAR point cloudfeature selectionbuilding extraction
《红外与毫米波学报》 2024 (001)
116-125 / 10
国家自然科学基金重点项目(42130105);湖北省地理国情监测中心项目(2023-2-06)Supported by the National Natural Science Foundation of China(42130105);Hubei Province Geagraphic National Condtions Moni-toring Center(2023-2-06)
评论