|国家科技期刊平台
首页|期刊导航|中国临床医学影像杂志|基于脑MRI的机器学习预测非小细胞肺癌T790M突变

基于脑MRI的机器学习预测非小细胞肺癌T790M突变OA北大核心CSTPCD

Machine learning prediction of T790M mutation in non-small cell lung cancer based on brain MRI

中文摘要英文摘要

目的:本研究基于脑部T1C和T2W MRI建立人工智能模型,预测肺癌脑转移患者在靶向治疗中的耐药性T790M突变.方法:本研究收集 80 例肺癌脑转移患者(2017 年 6 月—2019 年 12 月)的T1C和T2W MRI影像和临床数据进行回顾性分析(患者按照 2∶1 的比例分成训练集和测试集).采用无监督k-means算法将肿瘤区域划分为高亮度区域和低亮度区域,提取不同区域的影像组学图像特征构建模型,评估每个模型的诊断效果.绘制受试者工作特征(Receiver operating characteristic,ROC)曲线,计算ROC曲线下面积(Area under curve,AUC)、特异性和敏感性作为模型评价指标,分析模型的潜在临床应用价值.结果:对T1C和T2W MRI和临床特征融合的统计计算表明,本研究建立的模型对T790M突变具有良好的预测能力,在训练集和测试集上的AUC分别为 0.899 和 0.818.结论:本研究建立的计算机模型可以有效预测肺癌脑转移患者T790M突变,具有潜在的临床辅助诊断价值.

Objective:In this study,an artificial intelligence model was established based on contrast-enhanced T1-weighted(T1C)and T2-weighted(T2W)sequences of brain MRI to predict drug-resistant T790M mutations in lung cancer brain metastasis patients undergoing targeted therapy.Methods:In this study,T1C and T2W MRI imaging data and clinical data of 80 lung cancer brain metastasis patients(from June 2017 to December 2019)were collected for retrospective analysis(the data was divided into training and validation cohorts in a ratio of 2∶1).The unsupervised k-means algorithm was used to segment the tumor region into high-brightness and low-brightness subregions,and the radiomics features of every subregion were extracted to establish a model to evaluate the diagnostic performance of every model.Receiver operating characteristic(ROC)curves were plotted,and the area under the curve(AUC),specificity and sensitivity were used as evaluation metrics to analyze the potential clinical application value of the model.Results:Statistical calculations combining T1C and T2W MRI and clinical features showed that the model established in this study had good predictive ability for T790M mutation,with AUCs of 0.899 and 0.818 in the training and testing sets,respectively.Conclusion:The computer model established in this study can effectively predict the T790M mutation in lung cancer brain metastasis patients and has potential clinical auxiliary diagnostic value.

崔婀娜;杨春娜;王晓煜;沙宪政;赵鹏;孙艺瑶

沈阳大学智能科学与工程学院,辽宁 沈阳 110044中国医科大学智能医学学院,辽宁 沈阳 110122辽宁省肿瘤医院医学影像科,辽宁 沈阳 110801

临床医学

癌,非小细胞肺脑肿瘤肿瘤转移磁共振成像

Carcinoma,Non-Small-Cell LungBrain NeoplasmsNeoplasm MetastasisMagnetic Resonance Imaging

《中国临床医学影像杂志》 2024 (003)

153-159 / 7

国家重点研发项目BTIT(2022YFF1202803);辽宁省教育厅面上项目(JYTMS20230132).

10.12117/jccmi.2024.03.001

评论