| 注册
首页|期刊导航|国防科技大学学报|稀薄气体动理论中介观尺度数值模拟的加速方法

稀薄气体动理论中介观尺度数值模拟的加速方法

杨伟奇

国防科技大学学报2024,Vol.46Issue(2):70-78,9.
国防科技大学学报2024,Vol.46Issue(2):70-78,9.DOI:10.11887/j.cn.202402007

稀薄气体动理论中介观尺度数值模拟的加速方法

Acceleration scheme for the mesoscopic numerical simulation in the kinetic theory of rarefied gas

杨伟奇1

作者信息

  • 1. 国防科技大学空天科学学院,湖南长沙 410073
  • 折叠

摘要

Abstract

To overcome the difficulty that DVM(discrete velocity method)for solving the Boltzmann equation has extremely slow convergence speed and high computational resource consumption in the slip flow and early transition flow regimes,an acceleration scheme which coupling the mesoscopic/macroscopic equations in the full flow area was proposed.Boltzmann model equation could be solved based on the DVM using finite difference method at the mesoscopic level,and the moment equations could be solved based on the semi-implicit method for pressure linked equations using finite volume method at the macroscopic level.Fast convergence characteristic of the Navier-Stokes-Fourier/R26 moment equations in the low Knudsen number regime was fully utilized to accelerate mesoscopic equation.The distribute function could be reconstructed from the high-order Hermite polynomial function,so that the data transfer between the macroscopic and the mesoscopic equations could be done.Simulation results indicate that:the acceleration scheme,coupling the mesoscopic/macroscopic equations in the full flow area,shows great acceleration performance in the slip and early transition regime,which is able to save up to 95.28%computational time cost.However,the acceleration performance decreases significantly in the middle and large Knudsen number regime.

关键词

稀薄气体/Boltzmann方程/离散速度法/R26矩方法/加速方法

Key words

rarefied gas/Boltzmann equation/discrete velocity method/R26 moment method/acceleration scheme

分类

数理科学

引用本文复制引用

杨伟奇..稀薄气体动理论中介观尺度数值模拟的加速方法[J].国防科技大学学报,2024,46(2):70-78,9.

基金项目

国家自然科学基金资助项目(12302382,U1730247) (12302382,U1730247)

湖南省自然科学基金青年基金资助项目(2022JJ40542) (2022JJ40542)

国防科技大学学报

OA北大核心CSTPCD

1001-2486

访问量0
|
下载量0
段落导航相关论文