固体氢在极端压强下的超导性能OA北大核心CSTPCD
Superconductivity of Solid Hydrogen under Extreme Pressure
氢元素在常压下具有最简单的晶体结构和物理性质.随着压强增加,氢单质发生相变,由绝缘体转变为金属,被称为金属氢.数值模拟表明,金属氢具有高温超导电性,因此,金属氢研究也被称为高压物理领域的"圣杯"课题.利用基于密度泛函理论的第一性原理计算方法,对固体氢在极端高压(0.5~5.0 TPa)下的结构和超导电性开展了系统研究.研究结果表明:固体氢的高压相变序列为I41/amd→oC12→cI16;对于同一种结构,随着压强增加,电声耦合系数减小,费米面处电子态密度减小,特征振动频率增加,超导转变温度发生小幅变化;在 2.0 TPa压强下,固体氢的超导转变温度高达 418 K(库伦赝势经验值μ*=0.10).研究工作将为金属氢及其超导电性的后续理论和实验研究提供参考.
Hydrogen has the simplest crystal structure and physical properties at ambient pressure.As the pressure increases,hydrogen undergoes phase transition from insulator to metal,which being called metallic hydrogen.The numerical calculations also indicate that metallic hydrogen has high-temperature super-conductivity,thus the metal hydrogen is also known as the holy grail of physics subject.In this paper,the structural phase transition and superconducting transition temperature(Tc)of solid hydrogen under extreme high pressure 0.5-5.0 TPa were studied by first principles based on density functional theory,which may provide knowledge reserved for subsequent theoretical and experimental studies of metallic hydrogen and its superconductivity.The results show that the phase transition sequence of solid hydrogen under extreme high pressure is:I41/amd→oC12→cI16.For the same structure,with the increase of pressure,the electron-phonon-induced interaction decreases,the density of electronic states at the Fermi surface decreases,the vibration frequency increases,and the superconducting transition temperature changes.When the pressure is 2.0 TPa,the oC12 structure of solid hydrogen can obtain the highest Tc of 418 K(coulomb pseudopotential parameter μ*=0.10).This work provides a reference for further theoretical and experimental research on metallic hydrogen and its superconductivity.
杜昱;孙莹;王彦超;钟鑫
吉林大学物质模拟方法与软件教育部重点实验室, 吉林 长春 130012||吉林大学物理学院, 吉林 长春 130012
金属氢超高压强高温超导相变
metal hydrogenextreme high pressurehigh temperature superconductivityphase transtion
《高压物理学报》 2024 (002)
49-57 / 9
国家自然科学基金(52288102,52090024);科技部重点研发计划(2022YFA1402304);中国科学院战略性先导科技专项(XDB33000000)
评论