| 注册
首页|期刊导航|计算机应用研究|卷积神经网络的正则化方法综述

卷积神经网络的正则化方法综述

陈琨 王安志

计算机应用研究2024,Vol.41Issue(4):961-969,9.
计算机应用研究2024,Vol.41Issue(4):961-969,9.DOI:10.19734/j.issn.1001-3695.2023.06.0347

卷积神经网络的正则化方法综述

Survey on regularization methods for convolutional neural network

陈琨 1王安志1

作者信息

  • 1. 贵州师范大学大数据与计算机科学学院,贵阳 550025
  • 折叠

摘要

Abstract

In recent years,convolutional neural networks have been widely used in various fields of computer vision and achieved remarkable results.Regularization method is an important part of convolutional neural network,which helps to avoid the overfitting phenomenon of convolutional neural network in the process of model training.There are fewer reviews on regularization methods for convolutional neural networks,and most of them lack a summary of the newly proposed regularization methods.Firstly,this paper conducted a detailed summary of the literature on regularization methods in convolutional neural networks,and classified the regularization methods into parameter regularization,data regularization,label regularization and combinatorial regularization.After that,on the public datasets such as ImageNet,it compared and analyzed the advantages and disadvantages of different regularization methods based on evaluation indexes such as top-1 accuracy and top-5 accuracy.Finally,it discussed the future research trends and work directions of regularization methods for convolutional neural network.

关键词

卷积神经网络/正则化方法/过拟合/泛化

Key words

convolutional neural network/regularization method/overfitting/generalization

分类

信息技术与安全科学

引用本文复制引用

陈琨,王安志..卷积神经网络的正则化方法综述[J].计算机应用研究,2024,41(4):961-969,9.

基金项目

国家自然科学基金地区基金资助项目(62162013) (62162013)

贵州师范大学学术新苗基金资助项目(黔师新苗[2022]30号) (黔师新苗[2022]30号)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文