|国家科技期刊平台
首页|期刊导航|计算机与数字工程|基于条件对抗增强的Transformer煤矿微震定位方法

基于条件对抗增强的Transformer煤矿微震定位方法OACSTPCD

Microseismic Localization Method of Transformer Coal Mine Based on Conditional Confrontation Enhancement

中文摘要英文摘要

随着人工智能技术的发展以及煤矿微震监测系统的广泛应用,越来越多的深度学习模型被应用到煤矿微震事件震源定位问题的求解上.然而,由于目前的微震数据量小且数据单一不足以训练大且深的神经网络模型,而小且浅的神经网络模型也不足以表征受多方因素影响的微震事件的震源,因而导致了定位模型定位精度低和鲁棒性弱,在实际生产生活中表现较差,严重地阻碍了深度学习模型在微震定位领域上的发展.针对上述问题,提出一种基于条件对抗增强的Transformer煤矿微震定位方法CGAN-Transformer,该方法首先通过一个CGAN架构的网络模型将数据量少且单一的微震数据增强成数据量庞大且具有一定多样性的微震数据;其次,利用Transformer编码器层将微震波形数据转换为特征数据后再利用其注意力机制进一步学习微震波形数据深层次特征和复杂的站间依赖关系,同时也利用高斯分布随机变量抵消了不同地质条件对定位精度的影响;最后,通过引入混合密度输出层获取高斯分布参数,计算最优的震源位置.在智利和辽宁某矿数据集上的实验结果验证了该方法的有效性,结果表明该方法所获得的震中误差与震源误差均优于其他方法,在两个数据集上的定位误差分别降低了38%和12%,达到了提高震源定位精度和定位模型鲁棒性的目的.

With the development of artificial intelligence technology and the widespread use of microseismic monitoring sys-tems in coal mines,more and more deep learning models are applied to solve the source localization problem of microseismic events in coal mines.However,the small amount of microseismic data and single data are not enough to train large and deep neural network models,and the small and shallow neural network models are not enough to characterize the source of microseismic events influ-enced by multiple factors,thus leading to the low localization accuracy and weak robustness of the localization models,and poor per-formance in practical production life,which seriously hinders the development of deep learning models in the field of microseismic localization.To address the above problems,a Transformer coal mine microseismic localization method based on conditional adver-sarial augmentation,CGAN-Transformer,is proposed,which firstly augments microseismic data with small and single data volume into microseismic data with large data volume and certain diversity by a network model of CGAN architecture.Secondly,transforms microseismic waveform data into microseismic data using Transformer encoder layer to convert microseismic waveform data into fea-ture data and then use its attention mechanism to further learn the deep-level features and complex inter-station dependencies of mi-croseismic waveform data,and also use Gaussian distribution random variables to offset the influence of different geological condi-tions on localization accuracy.Finally,by introducing a hybrid density output layer to obtain Gaussian distribution parameters,the optimal source location is calculated.The experimental results on a mining dataset in Chile and Liaoning verify the effectiveness of the method.The results show that both the epicenter error and the source error obtained by this method are better than other meth-ods,and the localization error is reduced by 38%and 12%on the two datasets,respectively,achieving the purpose of improving the source localization accuracy and the robustness of the localization model.

丁琳琳;胡永亮;李昱达;王凯璐;王慧颖

辽宁大学信息学院 沈阳 110036国网辽宁省电力有限公司信息通信分公司 沈阳 110065

数学

生成对抗网络Transformer模型微震定位注意力机制混合密度网络

generative adversarial networksTransformer modelmicroseismic locationattention mechanismmixed densi-ty network

《计算机与数字工程》 2024 (001)

面向多源时序数据联动监测的大规模复杂时空事件查询与分析

1-8,17 / 9

国家自然科学基金项目(编号:62072220);国家重点研发计划项目(编号:2022YFC3004603);辽宁省自然科学基金计划项目(编号:2022-KF-13-06)资助.

10.3969/j.issn.1672-9722.2024.01.001

评论