|国家科技期刊平台
首页|期刊导航|热带气象学报|利用卷积神经网络开展偏振雷达定量降水估测研究

利用卷积神经网络开展偏振雷达定量降水估测研究OA北大核心CSTPCD

Research on Quantitative Precipitation Estimation by Polarized Radar Using CNN

中文摘要英文摘要

利用偏振升级改造后的广州新一代天气雷达(CINRAD/SAD)水平反射率ZH、差分传播相移率KDP、差分反射率因子ZDR和广东佛山219个地面气象自动站雨量数据,形成不同偏振量组合的8个数据集.基于卷积神经网络(CNN),建立雷达定量降水估测网络架构QPEnet,并将该架构用于雷达定量降水估测(QPE),评估结果表明:数据集通道数N的增加可降低QPEnet的定量降雨估测的均方根误差(RMSE),并提高相关系数(CORR);对于由ZH形成的数据集Z、Z_1~3 km和Z_6 min,随着通道数N的增加,数据集Z、Z_1~3 km和Z_6 min的性能逐步得到提高,数据集Z_1~3 km和Z_6 min的均方根误差(RMSE)分别是4.71和3.78,比数值集Z分别降低了1.3%和18.7%;数据集Z_1~3 km和Z_6 min的CORR分别是0.82和0.88,比数据集Z分别提高了2.5%和10.0%;对于ZH、KDP和ZDR偏振量组成的数据集里面,数据集Z_ZDR_KDP的拟合性能最好,RMSE为3.97,比数据集Z的RMSE降低了14.6%,CORR是0.86,比数据集Z提高了7.5%;分别对0.6~5 mm、5~10 mm、10~20 mm、20~30 mm、30~40 mm、40~50 mm和50 mm以上的7个降水量级的均方根误差(RMSE)、平均偏差比(MBR)、平均误差(AE)和相对误差(RE)等的统计结果表明,数据集Z_6 min降雨精度最高.

The ZH,ZDR and KDP of Guangzhou S-band dual polarization radar and rainfall data of 219 automatic meteorological stations in Foshan are used to form 8 datasets.Based on the convolutional neural network CNN,a radar quantitative precipitation estimation model is established,which will be used for ground precipitation estimation.The evaluating results of 8 datasets applied to the same precipitation estimation model are compared to each other.The results show that:The increase in the number of channels(N)of the datasets is beneficial to reduce the RMSE and improve CORR of the quantitative rainfall estimation results;For the datasets Z,Z_1~3 km and Z_6 min formed by ZH,as the number of channels increases,the performance of the data sets Z,Z_1~3 km and Z_6 min are gradually improved,and the RMSE of Z_1~3 km and Z_6 min are 4.71 and 3.78,which are-1.3%and 18.7%lower than that of dataset Z;the CORR of Z_1~3 km and Z_6 min are 0.82 and 0.88,which are 2.5%and 10%higher than that of dataset Z;Among other datasets composed of KDP and ZDR,the dataset Z_ZDR_KDP has the best fitting performance.The RMSE is 3.97,which is 14.6%lower than that of dataset Z,and the CORR is 0.86,which is 7.5%higher than that of dataset Z;The statistical results of RMSE,MBR,AE and RE for seven precipitation levels of 0.6~5 mm,5~10 mm,10~20 mm,20~30 mm,30~40 mm,40~50 mm and above 50 mm respectively,show that dataset Z_6 min has the highest rainfall accuracy.

蔡康龙;胡志群;谭浩波;黄锦灿;张伟强;张晶晶;植江玲

佛山市龙卷风研究中心/中国气象局龙卷风重点开放实验室,广东 佛山 528000中国气象科学研究院灾害天气国家重点实验室,北京 100081广东省气象局,广东 广州 510080高明区气象局,广东 佛山 528000

大气科学

定量降水估测卷积神经网络S波段双偏振雷达测雨精度

Quantitative Precipitation Estimation(QPE)convolutional neural networkS-band dual polarizationmeasurement accuracy

《热带气象学报》 2024 (001)

64-74 / 11

广东省重点领域研发计划(2020B1111200001);广东省气象局科学技术研究重点项目(GRMC2022Z03);佛山市气象局科学技术项目(201915)共同资助

10.16032/j.issn.1004-4965.2024.008

评论