| 注册
首页|期刊导航|电力系统自动化|基于低风速功率修正和损失函数改进的超短期风电功率预测

基于低风速功率修正和损失函数改进的超短期风电功率预测

臧海祥 赵勇凯 张越 程礼临 卫志农 秦雪妮

电力系统自动化2024,Vol.48Issue(7):248-257,10.
电力系统自动化2024,Vol.48Issue(7):248-257,10.DOI:10.7500/AEPS20230926006

基于低风速功率修正和损失函数改进的超短期风电功率预测

Ultra-short-term Wind Power Prediction Based on Power Correction Under Low Wind Speed and Improved Loss Function

臧海祥 1赵勇凯 1张越 1程礼临 1卫志农 1秦雪妮2

作者信息

  • 1. 河海大学电气与动力工程学院,江苏省南京市 211100
  • 2. 华能国际电力江苏能源开发有限公司清洁能源分公司,江苏省南京市 210009
  • 折叠

摘要

Abstract

Wind power has strong fluctuation and randomness. In order to further improve the prediction accuracy of wind power, an ultra-short-term wind power prediction model based on power correction under low wind speed and an improved loss function is proposed. The model uses convolutional neural networks, self-attention mechanisms and bidirectional gated recurrent unit to capture long-term temporal dependencies of wind power sequences. In order to solve the problem that it is difficult for the neural network to accurately fit the waiting wind state under low wind speed, the model corrects the predicted power under low wind speed by predicting wind speed and combining wind power at the current period. To solve the stability problem of parameter training, the model introduces a multivariate nonlinear loss function to extract the correlation between sequences by improving the prediction strategy and shared weights. The results show that the proposed model is superior to the comparison model in many error indices, and can effectively improve the effect of the ultra-short-term wind power prediction.

关键词

超短期风电功率预测/功率修正/损失函数改进/神经网络模型

Key words

ultra-short-term wind power prediction/power correction/loss function improvement/neural network model

引用本文复制引用

臧海祥,赵勇凯,张越,程礼临,卫志农,秦雪妮..基于低风速功率修正和损失函数改进的超短期风电功率预测[J].电力系统自动化,2024,48(7):248-257,10.

基金项目

国家自然科学基金资助项目(52077062). This work is supported by National Natural Science Foundation of China(No.52077062). (52077062)

电力系统自动化

OA北大核心CSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文