基于低风速功率修正和损失函数改进的超短期风电功率预测OA北大核心CSTPCD
Ultra-short-term Wind Power Prediction Based on Power Correction Under Low Wind Speed and Improved Loss Function
风电功率具有较强的波动性和随机性.为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型.该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖关系.为了解决低风速下待风状态神经网络难以精确拟合的问题,模型通过预测风速并结合当前时段的风电功率对低风速段的预测功率进行修正.针对参数训练的稳定性问题,模型通过改进预测策略和共享权重,引入一种多元非线性的损失函数来提取序列间的关联性.结果表明,所提模型在多项误差指标中均优于对比模型,能够有效提升超短期风电功率的预测效果.
Wind power has strong fluctuation and randomness. In order to further improve the prediction accuracy of wind power, an ultra-short-term wind power prediction model based on power correction under low wind speed and an improved loss function is proposed. The model uses convolutional neural networks, self-attention mechanisms and bidirectional gated recurrent unit to capture long-term temporal dependencies of wind power sequences. In order to solve the problem that it is difficult for the neural network to accurately fit the waiting wind state under low wind speed, the model corrects the predicted power under low wind speed by predicting wind speed and combining wind power at the current period. To solve the stability problem of parameter training, the model introduces a multivariate nonlinear loss function to extract the correlation between sequences by improving the prediction strategy and shared weights. The results show that the proposed model is superior to the comparison model in many error indices, and can effectively improve the effect of the ultra-short-term wind power prediction.
臧海祥;赵勇凯;张越;程礼临;卫志农;秦雪妮
河海大学电气与动力工程学院,江苏省南京市 211100华能国际电力江苏能源开发有限公司清洁能源分公司,江苏省南京市 210009
超短期风电功率预测功率修正损失函数改进神经网络模型
ultra-short-term wind power predictionpower correctionloss function improvementneural network model
《电力系统自动化》 2024 (007)
248-257 / 10
国家自然科学基金资助项目(52077062). This work is supported by National Natural Science Foundation of China(No.52077062).
评论