|国家科技期刊平台
首页|期刊导航|电子科技|基于CEEMD-ITSA-BiLSTM组合模型的短期负荷预测

基于CEEMD-ITSA-BiLSTM组合模型的短期负荷预测OA

Short-Term Load Forecasting Based on CEEMD-ITSA-BiLSTM Combined Model

中文摘要英文摘要

准确预测电力系统短期负荷有助于灵活规划系统资源、合理安排机组工作调度以及提高系统运行效率.针对负荷预测精度问题,文中提出了一种基于CEEMD-ITSA-BiLSTM(Complete Ensemble Empirical Mode Decomposition-Im-proved Tunicate Swarm Algorithm-Bidirectional Long Short-Term Memory)的短期负荷预测模型.对时序性负荷数据进行CEEMD分解,得到若干个平稳的IMF(Intrinsic Mode Function),并对每个IMF进行BiLSTM建模预测.为了提高BiLSTM的精度,采用ITSA算法对BiLSTM的隐含层节点数、学习率和训练次数等超参数进行参数寻优,建立CEEMD-ITSA-BiLSTM负荷预测模型.文中以实际负荷数据进行仿真实验,对比了单一BiLSTM和不同算法优化的BiLSTM模型,结果表明CEEMD-ITSA-BiLSTM模型的RMSE(Root Mean Square Error)、MAE(Mean Absolute Error)和MAPE(Mean Absolute Percentage Error)误差指标相比于BiLSTM模型分别提高了48.54%、51.32%和44.78%,显著低于其他对比模型.

Accurate short-term load forecasting of power system is helpful to flexible planning of system re-sources,reasonable scheduling of units,and improvement of system operation efficiency.In view of the accuracy of load forecasting,this study proposes a short-term load forecasting model based on CEEMD-ITSA-BiLSTM(Com-plete Ensemble Empirical Mode Decomposition-Improved Tunicate Swarm Algorithm-Bidirectional Long Short-Term Memory).CEEMD decomposition is carried out on the time series load data to obtain several stable IMF(In-trinsic Mode Function),and BiLSTM modeling and prediction are carried out for each IMF.To improve the accuracy of BiLSTM,ITSA algorithm is used to optimize the parameters of the super parameters such as the number of hidden layer nodes,learning rate and training times of BiLSTM,and CEEMD-ITSA-BiLSTM load forecasting model is es-tablished.The simulation experiment is conducted with the actual load data,and the single BiLSTM model and the BiLSTM model optimized by different algorithms are compared.The results show that the RMSE(Root Mean Square Error),MAE(Mean Absolute Error)and MAPE(Mean Absolute Percentage Error)error indexes of CEEMD-ITSA-BiLSTM model are increased by 48.54%,51.32%and 44.78%,respectively when compared with the BiL-STM model,and are significantly lower than other comparison models.

高典;张菁

上海工程技术大学 电子电气工程学院,上海 201620

计算机与自动化

短期负荷预测预测精度完全集成经验模态分解本征模函数被囊群算法参数寻优双向长短期记忆神经网络误差指标

short term load forecastingprediction accuracyCEEMDIMFTSAparameter optimizationBiLSTM neural networkerror index

《电子科技》 2024 (004)

30-37 / 8

国家自然科学基金(61902237)National Natural Science Foundation of China(61902237)

10.16180/j.cnki.issn1007-7820.2024.04.005

评论