|国家科技期刊平台
首页|期刊导航|电子科技|基于注意力机制和图像轮廓的实例分割算法

基于注意力机制和图像轮廓的实例分割算法OA

Instance Segmentation Based on Attention and Image Contour

中文摘要英文摘要

基于图像轮廓的实例分割方法利用少量轮廓顶点来表示物体,减少了算法的参数量,提高了算法的运行效率,但导致算法的精度低于传统逐像素处理的分割算法,获得的分割结果质量较差.为提升算法的准确性,文中提出一种基于图像轮廓结合注意力机制的实例分割模型(Attend the Contour snake,AC-snake).在主干网络中加入改进的大卷积核(Largekernel +)提升模型的感受野,提取更加丰富的特征信息.改进轮廓顶点变形阶段的网络结构,结合双通道注意力模块(Dual Channel attention,DC-attentio)加强轮廓顶点的有效信息,减少训练网络中的无效参数,提升检测精度和训练速度.实验结果表明,在Cityscapes验证数据集中,相较于原始模型,文中提出的改进模型性能有所提升.

Based on image contour,the instance segmentation method uses fewer contour nodes to represent an object,which effectively reduces the number of algorithmic parameters and improves its operation efficiency.Howev-er,with the segmentation result of poor quality,it is no match for traditional pixel-by-pixel processing segmenta-tion algorithm in terms of accuracy.To improve the accuracy of the algorithm,it is of great necessity to introduce a refined model of the instance segmentation(Attend the Contour snake,AC-snake),which is based on image con-tour with a combination of attention mechanism.An improved Largekernel + is added to the backbone network to im-prove the receptive field of the model and extract richer feature information.The network structure at the contour ver-tex deformation stage is improved,and the Dual Channel attention(DC-attentio)module is combined to enhance the effective information of contour vertex,reduce the invalid parameters in the training network,and improve the de-tection accuracy and training speed.The experimental results show that in Cityscapes validation data set,the im-proved model proposed in this study has improved performance when compared with the original model.

顾登华;顾春华

上海理工大学 光电信息与计算机工程学院,上海 200093

电子信息工程

实例分割图像轮廓轮廓顶点逐像素注意力机制大卷积核感受野特征信息

instance segmentationimage contourcontour nodepre-pixelattention meachanismlarge kernelreceptive fieldfeature information

《电子科技》 2024 (004)

62-68 / 7

上海市科委科技行动计划(20DZ2308700)Science and Technology Action Plan of Shanghai Municipal Science and Technology Commission(20DZ2308700)

10.16180/j.cnki.issn1007-7820.2024.04.009

评论