基于特征融合并行优化模型的环境γ辐射剂量率数据分析与预测OA北大核心CSTPCD
Prediction of HPIC dose rate in radiation environment based on feature fusion and parallel optimization model
核电辐射环境监测网(ERMS)能提供实时、连续的监测数据,是核电最重要的外围监督性设施,为辐射环境评估提供数据依据.为掌握影响辐射数据质量的特征要素与及时发现环境的辐射异常,开展高压电离室探测器(HPIC)剂量率数据的特征挖掘与预测研究,提出一种基于奇异谱分析算法(singular spectrum analysis,SSA)的γ辐射剂量率数据预处理方法,从其历史数据中学习涨幅趋势和拐点细节变化;针对数据的多维度特点,设计一种特征融合并行优化模型预测框架,以福建宁德核电站外围 11 个自动站辐射监测数据、天顶方向总电子含量(VTEC)数据进行实验验证.实验结果表明,该模型对环境γ辐射剂量率预测取得了较好的预测性能与精度.
Environment radiation monitoring system(ERMS)around nuclear power plant can provide real-time and continuous monitoring data,which is the most important peripheral supervision facility of nuclear power plant and provides data basis for radiation environment assessment.In order to master the characteristic elements that affect the quality of radiation data and timely detect environmental radiation anomalies,data feature·132·exploring and prediction research of γ radiation dose rate data were carried out.A preprocessing method of HPIC dose-rate data based on singular spectrum analysis was proposed to learn the increase trend and inflection point details from its historical data.According to the multidimensional characteristics of data,a SSA feature fusion parallel optimization model prediction framework was designed,and simulation experiments were carried out.Data of 11 automatic radiation monitoring stations around Ningde Nuclear Power Plant in Fujian Province and Vertical Total Electron Content(VTEC)were used for experimental verification.The experimental results show that the feature fusion network model achieves good prediction performance and accuracy for γ radiation dose rate prediction.
刘君武;吴允平;林明贵
福建师范大学光电与信息工程学院,福州 350007福建师范大学光电与信息工程学院,福州 350007||数字福建环境监测物联网实验室,福州 350007||福建省光电传感应用工程技术研究中心,福州 350007福建省辐射环境监督站,福州 350013
计算机与自动化
时间序列辐射环境高压电离室探测器γ辐射剂量率奇异谱分析特征融合网络
time seriesradiation environmentHPICγ radiation dose ratesingular spectrum analysisfeature fusion network
《辐射防护》 2024 (002)
126-133 / 8
国家自然科学海峡联合基金重点项目(No.U1805263);福建省自然科学基金项目(No.2019J01427);江西省核地学数据科学与系统工程技术研究中心资助项目(JETRCNGDSS202101).
评论