深度学习在糖尿病视网膜病变分类领域的研究进展OA北大核心CSTPCD
Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification
糖尿病视网膜病变是导致糖尿病患者视力受损的主要原因之一,早期的分类诊断对于病情的治疗与控制具有重要意义.深度学习方法能够自动提取视网膜病变的特征并进行分类,因此成为糖尿病视网膜病变分类的重要工具.介绍常用的糖尿病视网膜病变数据集及评价指标,总结了深度学习在糖尿病视网膜病变二分类中的应用;综述了不同的经典深度学习模型在糖尿病视网膜病变严重程度分类中的应用,重点阐述卷积神经网络的分类诊断方法,并对不同方法进行综合对比分析;最后讨论该领域面临的挑战,并对未来发展方向进行了展望.
Diabetic retinopathy is one of the primary causes of visual impairment in diabetic patients,and early classifica-tion and diagnosis are of significant importance for disease management and control.Deep learning methods have the capability to automatically extract features of retinal lesions and perform classification,making them essential tools for diabetic retinopathy classification.This paper begins by introducing commonly used datasets and evaluation metrics for diabetic retinopathy,summarizing the applications of deep learning in binary classification of diabetic retinopathy.It then provides an overview of various classical deep learning models used for severity classification of diabetic retinopathy,focuses on the classification and diagnosis methods of convolutional neural networks,and makes a comprehensive comparative analysis of different approaches.Finally,the paper discusses the challenges in this field and provides an outlook on future directions for research and development.
孙石磊;李明;刘静;马金刚;陈天真
山东中医药大学 智能与信息工程学院,济南 250355山东浪潮优派科技教育有限公司,济南 250101
计算机与自动化
糖尿病视网膜病变深度学习二分类严重程度分类卷积神经网络(CNN)
diabetic retinopathydeep learningbinary classificationseverity classificationconvolutional neural network(CNN)
《计算机工程与应用》 2024 (008)
16-30 / 15
国家自然科学基金面上项目(82174528);山东省研究生教育优质课程和教学资源库建设项目(SDYKC20047,SDYAL2022041);教育部产学合作协同育人项目(220606121142949).
评论