基于机器学习的热带气旋灾害等级评估模型构建及其活动特征分析OA北大核心CSTPCD
Construction of Tropical Cyclone Disaster Grade Assessment Model Based on Machine Learning and Analysis of Its Activity Characteristics
在全球变暖的背景下,热带气旋(TC)作为影响我国最严重的自然灾害之一,其活动特征及灾害损失评估研究受到了广泛关注.采用组合赋权和k-means等方法,分析了 2000年以来登陆我国的TC及灾害损失特征,并构建了基于机器学习的TC灾害等级评估模型.结果表明:从总体趋势来看,登陆我国的TC频数在逐年减少,但登陆风速的最大值却在缓慢增加;广东、浙江、福建、广西受灾较为严重,但整体上全国综合灾情指数呈下降趋势;与传统的随机森林、支持向量机、朴素贝叶斯算法相比,LightGBM(Light Gradient Boosting Machine)在TC灾害评估中效果最佳,准确率值为0.91,其中致灾因子是模型中最关键的因素,其次是防灾减灾能力、暴露度和脆弱性指标.
Tropical cyclone(TC),one of the worst natural disasters in China,has garnered a lot of inter-ests for both its activity characteristics and disaster loss assessment,especially in the context of global warming.In this paper,the combined weighting and k-means clustering methods are used to analyze the spatial and temporal characteristics of TC and its disaster loss in China since 2000.In addition,the disaster grade assessment model of TC based on machine learning algorithm is also constructed.The results show that the frequency of TC landing in China is in a trend of decreasing year by year,but the maximum land-ing wind speed has been slowly strengthening.Guangdong,Zhejiang,Fujian and Guangxi provinces are seriously affected by TC,but overall,the comprehensive disaster index shows a downward trend.Com-pared with the classic RF,SVM and NB algorithms,LightGBM(Light Gradient Boosting Machine)has the best performance in assessing the TC disaster loss,and the accuracy can reach 0.91.Moreover,the disaster-inducing factor is the most critical factor in the assessment model,followed by the disaster preven-tion and mitigation,exposure and vulnerability indicators.
刘淑贤;张立生;刘扬;王维国;杨琨;张源达
国家气象中心,北京 100081中国气象科学研究院,北京 100081||南京信息工程大学,南京 210044
大气科学
热带气旋灾害等级评估机器学习LightGBM(Light Gradient Boosting Machine)
tropical cyclone(TC)disaster grade assessmentmachine learningLightGBM(Light Gradient Boosting Machine)
《气象》 2024 (003)
331-343 / 13
国家气象中心青年基金项目(Q202212)、国家气象中心气象现代化建设专项(QXXDH202226)和国家重点研发计划(2019YFC1510204)共同资助
评论