早期代数思维在一~三年级的唤醒与渗透OA北大核心CSTPCD
Awaking and Penetrating Early Algebraic Thinking in Grade 1-3
代数思维是对数量模式在深层次结构关系上的概括与分析,早期代数思维使得儿童能够借助代数符号或者自然语言描述可变化数量关系,对于日后的数学学习影响深远.基于 3 种典型情境:符号运算的归纳、图形序列的数值推理、变量的表征与应用,构建了早期代数思维在认知过程上的多元理论框架.结合该理论框架,反思中国的教学现状,详细阐述在小学一~三年级的数学教学中渗透早期代数思维的策略.
Algebraic thinking refers to the generalization and analysis of deep-level structural relationships between quantitative patterns.Early algebraic thinking enables children to describe changeable quantitative relationships with the help of algebraic symbols or natural language,which will have a profound impact on future math learning.Based on three typical situations(the induction of symbolic operations,the numerical reasoning of graphic sequences,and the representation and application of variables),we construct a multi-theoretical framework of early algebraic thinking on cognitive process.Furthermore,combined with this theoretical framework,we reflect on the current teaching situation in China,and elaborate on the strategies for incorporating early algebraic thinking into mathematics teaching in the first to third grades of primary schools.
刘晓宇;朱红祥;于文华;司继伟
山东师范大学 心理学院,山东 济南 250358山东师范大学 数学与统计学院,山东 济南 250358
教育学
早期代数算术思维代数思维小学生
early algebraarithmetic thinkingalgebraic thinkingprimary school student
《数学教育学报》 2024 (002)
34-40 / 7
教育部人文社会科学规划基金项目——儿童数学焦虑的认知根源及其与数学表现的双向关系:行为与脑研究(18YJA190014);教育部人文社会科学研究规划基金项目——基于BEA的个体问题解决干预有效性研究(20YJAZH124)
评论