| 注册
首页|期刊导航|计算机技术与发展|基于空间投影和聚类划分的SVR加速算法

基于空间投影和聚类划分的SVR加速算法

王梅 张天时 王志宝 任怡果

计算机技术与发展2024,Vol.34Issue(4):24-29,6.
计算机技术与发展2024,Vol.34Issue(4):24-29,6.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0004

基于空间投影和聚类划分的SVR加速算法

An Accelerator for SVR Algorithms Based on Spatial Projection and Clustering Partitioning

王梅 1张天时 2王志宝 2任怡果2

作者信息

  • 1. 东北石油大学 计算机科学与信息技术学院,黑龙江 大庆 163318||黑龙江省石油大数据与智能分析重点实验室(东北石油大学),黑龙江 大庆 163318
  • 2. 东北石油大学 计算机科学与信息技术学院,黑龙江 大庆 163318
  • 折叠

摘要

Abstract

Data not only generates value,but also provides the impetus for the scientific development of statistics.With the rapid development of science and technology,massive data has emerged,but the large-scale data makes it difficult for many traditional processing methods to meet the needs of data analysis in various fields.Facing the inefficiency of learning algorithms in the era of massive data,partitioning is usually considered as the most direct and widely used strategy to solve this problem.SVR is a powerful regression algorithm with wide applications in the fields of pattern recognition and data mining.However,SVR is inefficient in training when dealing with large-scale data.For this reason,we propose a SVR acceleration algorithm based on spatial projection and clustering division(PKM-SVR)by utilizing the idea of partitioning.The projection vector is used to project the data into a two-dimensional space;the clustering method is used to divide the data space into k disjoint regions;the SVR model is trained on each region;and the SVR model in each region is used to predict the to-be-recognized samples that fall into the same region.Comparison experiments are conducted with the traditional data partitioning method on standard datasets,and the experimental results show that the proposed algorithm is faster to train and exhibits better prediction performance.

关键词

大规模数据/分治法/支持向量回归/主成分分析/聚类

Key words

large-scale data/divide and rule method/support vector regression/principal components analysis/clustering

分类

信息技术与安全科学

引用本文复制引用

王梅,张天时,王志宝,任怡果..基于空间投影和聚类划分的SVR加速算法[J].计算机技术与发展,2024,34(4):24-29,6.

基金项目

国家自然科学基金项目(51774090) (51774090)

黑龙江省博士后科研启动金资助项目(LBH-Q20080) (LBH-Q20080)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文