铋基光催化剂的金属或非金属改性研究进展OA北大核心CSTPCD
Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts
随着经济的快速增长,环境和能源问题日益突出.太阳能作为一种可再生、环保的能源,受到了许多研究人员的关注,最大限度地利用太阳能资源成为未来的研究热点.众所周知,光催化技术可以将太阳能转化为化学能或电能,为环境污染提供解决方案.因此,半导体光催化技术被认为是解决能源危机和环境问题的最环保的技术之一.铋基半导体材料由于合适的能带结构、丰富的种类、无毒性和低成本,在光催化领域受到欢迎.然而,纯Bi基光催化剂存在光激发电子-空穴对复合效率高、量子产率低和光吸收能力有限的问题,导致光催化性能低.为了克服这些限制,人们设计了各种策略,比如金属或非金属掺杂、金属沉积、异质结构建和诱导缺陷生成来提高它们的光催化活性.在这些策略中,元素掺杂或金属沉积被认为是调整铋基材料能带结构和物化性质的有效方法.这个方法拓宽了光响应范围和提高了光催化性能.这篇综述总结了金属掺杂、非金属掺杂、金属和非金属共掺杂以及金属沉积改性铋基材料的最新研究进展.它也探索了它们在光催化降解污染物和重金属离子、氮气还原、二氧化碳还原、光催化抗菌等各个领域的应用.关于金属掺杂,我们将其分为三类:碱金属或碱土金属掺杂、过渡金属掺杂和稀土金属掺杂,并详细介绍了每种掺杂的优缺点.非金属掺杂则被分为卤素掺杂和非卤素掺杂,并重点研究非金属掺杂对铋基材料的影响.此外,我们还纵向比较了每个元素的优点.结合最近的研究进展,简要介绍了结合金属和非金属元素优点的共掺杂.对于金属沉积,我们主要从肖特基势垒和局域表面等离子体共振(LSPR)效应两个方面介绍了对Bi基材料的影响.最后,我们也呈现了金属或非金属改性Bi基光催化剂目前面临的挑战和前景.
With the rapid growth of the economy,environmental and energy issues have become increasingly prominent.Solar energy,as a renewable and environmentally friendly energy source,has attracted the attention of many researchers.Maximizing the utilization of solar energy resources has become a hot research topic in the future.It is well known that photocatalytic technology can convert solar energy into chemical or electric energy,offering a solution to environmental pollution.Therefore,semiconductor photocatalytic technology has been recognized as one of the most eco-friendly approaches for addressing energy crises and environmental pollution.Bismuth-based semiconductor materials,have gained popularity in the field of photocatalysis due to their suitable band structure,wide range of variations,non-toxicity,and low cost.However,pure Bi-based photocatalysts suffer from high recombination efficiency of photoexcited electron-hole pairs,poor quantum yield and limited light absorption ability,resulting in low photocatalytic performance.To overcome these limitations,various strategies such as metal or nonmetal doping,metal deposition,construction of heterojunctions and inducing defect generation have been employed to enhance their photocatalytic performance.Among these strategies,element doping or metal deposition is considered an effective approach for adjusting the band structure and physicochemical properties of bismuth-based materials.This extends the range of light response and improves photocatalytic performance.This mini review aims to summarize the recent research progress in Bi-based materials modified by metal doping,nonmetal doping,metal and nonmetal co-doping,and metal deposition.It also explores their applications in different fields,including photocatalytic removal of pollutants and heavy metal ions,nitrogen reduction,carbon dioxide reduction,and photocatalytic antibacterial,etc.Regarding metal doping,we classify it into three categories:alkali or alkaline earth metals doping,transition metal doping,and rare earth metal doping,and provide a detailed introduction to the advantages and disadvantages of each type of doping.Nonmetallic doping is categorized into halogen and non-halogen doping,with a focus on the impact of nonmetallic doping on bismuth-based materials.Furthermore,we present a vertical comparison of the advantages of each element vertically.Co-doping,which combines the advantages of both metal and nonmetal elements,is briefly outlined in terms of recent research progress.In the case of metal deposition,we mainly discuss the impact on Bi based materials from two aspects:the Schottky barrier and the localized surface plasmon resonance(LSPR)effect.Finally,we also discuss the current challenges and prospects faced by metal or nonmetal modified Bi-based photocatalysts.
丁慧伟;彭博;王志豪;韩巧凤
南京理工大学软化学与功能材料教育部重点实验室,南京 210094
化学
铋基光催化剂金属掺杂非金属掺杂共掺金属沉积电子结构
Bismuth based photocatalystMetal dopingNonmetal dopingCo-dopingMetal depositionElectronic structure
《物理化学学报》 2024 (004)
新型碱式硝酸铋系光催化剂的微结构可控合成及其高度有序异质结的构建
107-130 / 24
The project was supported by the National Natural Science Foundation of China(51772155).国家自然科学基金(51772155)资助项目
评论