| 注册
首页|期刊导航|计算机技术与发展|基于改进YOLOv5的眼睛及瞳孔检测算法

基于改进YOLOv5的眼睛及瞳孔检测算法

韩慧妍 范鑫茹

计算机技术与发展2024,Vol.34Issue(4):76-81,6.
计算机技术与发展2024,Vol.34Issue(4):76-81,6.DOI:10.20165/j.cnki.ISSN1673-629X.2024.0012

基于改进YOLOv5的眼睛及瞳孔检测算法

Eye and Pupil Detection Algorithm Based on Improved YOLOv5

韩慧妍 1范鑫茹1

作者信息

  • 1. 中北大学计算机科学与技术学院,山西 太原 030051||机器视觉与虚拟现实山西省重点实验室,山西 太原 030051||山西省视觉信息处理及智能机器人工程研究中心,山西 太原 030051
  • 折叠

摘要

Abstract

;To address the issue of inaccurate and missed eye and pupil detection caused by the susceptibility of eye images to light interfer-ence,an improved YOLOv5 based eye and pupil detection algorithm is proposed.First of all,image pre-processing is carried out,and three image enhancement methods are compared.It is decided to use CLAHE(limited contrast Adaptive histogram equalization)method with good effect to enhance the image and improve the contrast;Secondly,the Swin Transformer module is introduced into YOLOv5 network to replace the last C3 module of the backbone network and three C3 modules in the three prediction heads,so as to improve the feature extraction ability of the network and improve the detection accuracy of eye parts;Finally,by introducing a multi-scale feature cross layer fusion mechanism in the YOLOv5 network,two target prediction heads are added to reduce the network's missed detection rate for eye and pupil regions.This article selected 2 400 eye datasets with different levels of illumination from the Data setⅩⅧ in the ELSE standard dataset,of which 1 600 were training sets and 800 were testing sets.The experimental results show that the improved YOLOv5 network can detect the entire part of the eye and the complete pupil,with a high detection confidence.The mAP has increased by 3.2 percentage points,the Recall has increased by 2.7 percentage points,and has good real-time performance.

关键词

眼睛及瞳孔检测/YOLOv5/CLAHE/Swin Transformer/多尺度特征跨层融合机制

Key words

eye part detection/YOLOv5/CLAHE/Swin Transformer/Multi scale feature cross layer fusion mechanism

分类

信息技术与安全科学

引用本文复制引用

韩慧妍,范鑫茹..基于改进YOLOv5的眼睛及瞳孔检测算法[J].计算机技术与发展,2024,34(4):76-81,6.

基金项目

国家自然科学基金(62106238) (62106238)

山西省科技重大专项计划"揭榜挂帅"项目(202201150401021) (202201150401021)

山西省自然科学基金项目(202303021211153) (202303021211153)

山西省科技成果转化引导专项(202104021301055) (202104021301055)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文