| 注册
首页|期刊导航|通信学报|移动边缘计算中基于图到序列深度强化学习的复杂任务部署策略

移动边缘计算中基于图到序列深度强化学习的复杂任务部署策略

陈卓 操民涛 周致圆 黄欣 李彦

通信学报2024,Vol.45Issue(3):244-257,14.
通信学报2024,Vol.45Issue(3):244-257,14.DOI:10.11959/j.issn.1000-436x.2024058

移动边缘计算中基于图到序列深度强化学习的复杂任务部署策略

Graph-to-sequence deep reinforcement learning based complex task deployment strategy in MEC

陈卓 1操民涛 2周致圆 3黄欣 4李彦2

作者信息

  • 1. 重庆理工大学计算机科学与工程学院,重庆 400054
  • 2. 重庆理工大学两江人工智能学院,重庆 401135
  • 3. 重庆凯瑞机器人技术有限公司,重庆 400799
  • 4. 中国移动通信集团重庆有限公司,重庆 401120
  • 折叠

摘要

Abstract

With the help of mobile edge computing(MEC)and network virtualization technology,the mobile terminals can offload the computing,storage,transmission and other resource required for executing various complex applications to the edge service nodes nearby,so as to obtain more efficient service experience.For edge service providers,the opti-mal energy consumption decision-making problem when deploying complex tasks was comprehensively investigated.Firstly,the problem of deploying complex tasks to multiple edge service nodes was modeled as a mixed integer pro-gramming(MIP)model,and then a deep reinforcement learning(DRL)solution strategy that integrated graph to se-quence was proposed.Potential dependencies between multiple subtasks through a graph-based encoder design were ex-tracted and learned,thereby automatically discovering common patterns of task deployment based on the available re-source status and utilization rate of edge service nodes,and ultimately quickly obtaining the deployment strategy with the optimal energy consumption.Compared with representative benchmark strategies in different network scales,the experi-mental results show that the proposed strategy is significantly superior to the benchmark strategies in terms of task de-ployment error ratio,total power consumption of MEC system,and algorithm solving efficiency.

关键词

移动边缘计算/任务部署/深度强化学习/图神经网络

Key words

mobile edge computing/task deployment/deep reinforcement learning/graph neural network

分类

信息技术与安全科学

引用本文复制引用

陈卓,操民涛,周致圆,黄欣,李彦..移动边缘计算中基于图到序列深度强化学习的复杂任务部署策略[J].通信学报,2024,45(3):244-257,14.

基金项目

国家自然科学基金资助项目(No.62071077,No.61671096) The National Natural Science Foundation of China(No.62071077,No.61671096) (No.62071077,No.61671096)

通信学报

OA北大核心CSTPCD

1000-436X

访问量9
|
下载量0
段落导航相关论文