基于马尔可夫转移场和深度残差网络的电能质量复合扰动多标签分类OA北大核心CSTPCD
Multi-label Classification of Power Quality Composite Disturbances Based on Markov Transfer Field and ResNet
现代电力系统的电能质量扰动逐渐复杂化和多样化,传统的分类方法难以适应复杂多样的扰动变化.依据神经网络进行识别分类的研究都采用传统的单标签分类方法,当出现标签集以外的复合扰动,该分类方法将无法使用.若要更新扰动标签集,则需要整个分类模型重新训练.因此,该文利用深度残差网络构建一种适应能力更强的多标签分类系统,该系统能够准确识别训练样本标签集以外未知标签组合的电能质量复合扰动(power quality disturbances,PQDs).首先利用马尔可夫转移场(Markov transition field,MTF)将一维时域扰动信号转换为二维可视化图像,利用深度残差网络(ResNet)建立9个二分类器提取二维图像中涵盖的扰动特征.通过 9 个二分类器构成的多标签分类系统进行扰动分类,其训练样本标签集内分类正确率可达 97.58%,掺杂标签集外的扰动信号平均正确率可达97.67%,远高于同级别的分类系统.
The disturbance of power quality in modern power system becomes complicated and diversified.Traditional classification methods are difficult to adapt to complex and diverse perturbations.The traditional single-label classification method is used in the research of recognition and classification based on neural networks.When there are compound disturbances outside the label set,the classification method can not be used.If the label set is to be updated,the whole classification model should be retrained.Therefore,this paper uses deep residual network to construct a more adaptive multi-label classification system,which can accurately identify the power quality disturbances(PQDs)of unknown tag combinations outside the training sample tag set.First,a Markov transition field(MTF)is used to transform the disturbance signal into a two-dimensional visual image,and a deep residual network(ResNet)is used to build nine binary classifiers to extract the disturbance features covered by the two-dimensional image.The disturbance classification is carried out by a multi-label classification system composed of 9 binary classifiers.The classification accuracy of the training samples in the label set is 97.58%,and the average accuracy of the disturbance signals outside the doping label set is 97.67%,which is much higher than the classification system of the same level.
罗溢;李开成;肖贤贵;尹晨;李贝奥;李旋
华中科技大学电气与电子工程学院,湖北省 武汉市 430074
动力与电气工程
电能质量扰动多标签马尔可夫转移场深度残差网络扰动识别
power quality disturbancesmulti-labelMarkov transition fielddeep residual networkdisturbances identification
《中国电机工程学报》 2024 (007)
2519-2530,后插2 / 13
国家自然科学基金项目(52077089).Project Supported by National Natural Science Foundation of China(52077089).
评论