| 注册
首页|期刊导航|中国电机工程学报|基于马尔可夫转移场和深度残差网络的电能质量复合扰动多标签分类

基于马尔可夫转移场和深度残差网络的电能质量复合扰动多标签分类

罗溢 李开成 肖贤贵 尹晨 李贝奥 李旋

中国电机工程学报2024,Vol.44Issue(7):2519-2530,后插2,13.
中国电机工程学报2024,Vol.44Issue(7):2519-2530,后插2,13.DOI:10.13334/j.0258-8013.pcsee.222858

基于马尔可夫转移场和深度残差网络的电能质量复合扰动多标签分类

Multi-label Classification of Power Quality Composite Disturbances Based on Markov Transfer Field and ResNet

罗溢 1李开成 1肖贤贵 1尹晨 1李贝奥 1李旋1

作者信息

  • 1. 华中科技大学电气与电子工程学院,湖北省 武汉市 430074
  • 折叠

摘要

Abstract

The disturbance of power quality in modern power system becomes complicated and diversified.Traditional classification methods are difficult to adapt to complex and diverse perturbations.The traditional single-label classification method is used in the research of recognition and classification based on neural networks.When there are compound disturbances outside the label set,the classification method can not be used.If the label set is to be updated,the whole classification model should be retrained.Therefore,this paper uses deep residual network to construct a more adaptive multi-label classification system,which can accurately identify the power quality disturbances(PQDs)of unknown tag combinations outside the training sample tag set.First,a Markov transition field(MTF)is used to transform the disturbance signal into a two-dimensional visual image,and a deep residual network(ResNet)is used to build nine binary classifiers to extract the disturbance features covered by the two-dimensional image.The disturbance classification is carried out by a multi-label classification system composed of 9 binary classifiers.The classification accuracy of the training samples in the label set is 97.58%,and the average accuracy of the disturbance signals outside the doping label set is 97.67%,which is much higher than the classification system of the same level.

关键词

电能质量扰动/多标签/马尔可夫转移场/深度残差网络/扰动识别

Key words

power quality disturbances/multi-label/Markov transition field/deep residual network/disturbances identification

分类

信息技术与安全科学

引用本文复制引用

罗溢,李开成,肖贤贵,尹晨,李贝奥,李旋..基于马尔可夫转移场和深度残差网络的电能质量复合扰动多标签分类[J].中国电机工程学报,2024,44(7):2519-2530,后插2,13.

基金项目

国家自然科学基金项目(52077089).Project Supported by National Natural Science Foundation of China(52077089). (52077089)

中国电机工程学报

OA北大核心CSTPCD

0258-8013

访问量0
|
下载量0
段落导航相关论文