| 注册
首页|期刊导航|中国舰船研究|基于ASNLS算法的智能浮标浮潜模型参数辨识

基于ASNLS算法的智能浮标浮潜模型参数辨识

钟一鸣 于曹阳 曹军军 姚宝恒 连琏

中国舰船研究2024,Vol.19Issue(2):13-20,8.
中国舰船研究2024,Vol.19Issue(2):13-20,8.DOI:10.19693/j.issn.1673-3185.03186

基于ASNLS算法的智能浮标浮潜模型参数辨识

Parameter identification of smart float diving model based on ASNLS algorithm

钟一鸣 1于曹阳 1曹军军 1姚宝恒 1连琏2

作者信息

  • 1. 上海交通大学 海洋学院,上海 200030
  • 2. 上海交通大学 海洋学院,上海 200030||上海交通大学 海洋工程全国重点实验室,上海 200240
  • 折叠

摘要

Abstract

[Objectives]Aiming at the challenge of accurate diving modeling of a smart float,an anti-saturation and noise least squares(ASNLS)algorithm is proposed in this paper to achieve diving multi-parameter identification and depth prediction.[Methods]Firstly,the nonlinear motion characteristics of the smart float actuator were included in the gray box-based diving model to better fit the actual model,and the continuous diving motion equation was transformed into a discrete form to match the real-world discrete data sampling.Subsequently,the aforementioned discrete diving model was constructed into a correlation form to attenuate the influence of data noise.Finally,by adjusting the values of the covariance matrix,the designed diving parameter identification algorithm achieved resistance to data saturation.[Results]Based on the data of the South China Sea deep diving experiment of the smart float in 2021,diving model parameter identifica-tion and depth prediction are carried out.The results demonstrate that the ASNLS algorithm has faster conver-gence speed(31.8%higher than the least squares algorithm)and smaller depth prediction error(average abso-lute percentage errors less than 9%at different depths)than both the traditional least squares algorithm and supports the vector machine algorithm.[Conclusions]Consequently,the ASNLS algorithm can provide ef-fective support for the depth control and prediction of the smart float.

关键词

智能浮标/参数辨识/抗数据饱和及测量噪声的最小二乘算法/运动预测/数据饱和

Key words

smart float/parameter identification/antisaturation and noise least squares(ASNLS)al-gorithm/motion prediction/data saturation

分类

交通工程

引用本文复制引用

钟一鸣,于曹阳,曹军军,姚宝恒,连琏..基于ASNLS算法的智能浮标浮潜模型参数辨识[J].中国舰船研究,2024,19(2):13-20,8.

基金项目

国家自然科学基金资助项目(51909161,41527901) (51909161,41527901)

上海市自然科学基金资助项目(22ZR1434600) (22ZR1434600)

中国舰船研究

OA北大核心CSTPCD

1673-3185

访问量0
|
下载量0
段落导航相关论文