| 注册
首页|期刊导航|CT理论与应用研究|融合形状变换及纹理学习的肺结节生长预测

融合形状变换及纹理学习的肺结节生长预测

马力 黄德皇 王艳芳

CT理论与应用研究2024,Vol.33Issue(3):317-324,8.
CT理论与应用研究2024,Vol.33Issue(3):317-324,8.DOI:10.15953/j.ctta.2023.167

融合形状变换及纹理学习的肺结节生长预测

Predicting Lung Nodule Growth with Shape Transformation and Texture Learning

马力 1黄德皇 2王艳芳1

作者信息

  • 1. 中山仰视科技有限公司, 广东 中山 528400
  • 2. 中山北京理工大学研究院, 广东 中山 528400
  • 折叠

摘要

Abstract

While artificial intelligence has achieved considerable maturity in lung nodule detection,research on growth prediction remains limited.Accurate growth prediction aids clinical decision-making,informing patient follow-up strategies.This paper proposes a novel nodule growth prediction network model that generates high-quality lung nodule images at specific time intervals.The model employs a two-branch structure for feature extraction.One branch,leveraging a displacement field prediction mechanism,models the shape transformation of pulmonary nodules through voxel-level future displacement estimation.The other branch,empowered by a three-dimensional U-Net,focused on learning texture changes within the nodules.A coordinate attention mechanism that emphasizes informative features within the extracted high-dimensional feature map.Subsequently,the outputs of both branches are fused and fed into the feature reconstruction module to generate the final lung nodule growth prediction image.Furthermore,a time interval coding module is introduced to incorporate the desired time interval into the network,enabling the generation of prediction images for different future time points.

关键词

肺结节/生长预测/位移场/时间间隔编码

Key words

lung nodules/growth prediction/displacement field/time interval coding

分类

数理科学

引用本文复制引用

马力,黄德皇,王艳芳..融合形状变换及纹理学习的肺结节生长预测[J].CT理论与应用研究,2024,33(3):317-324,8.

基金项目

中山市2019年高端科研机构创新专项(第一批)(基于人工智能CT时序列的肺癌早期预测及其应用). (第一批)

CT理论与应用研究

OACSTPCD

1004-4140

访问量0
|
下载量0
段落导航相关论文