| 注册
首页|期刊导航|电力信息与通信技术|基于多智能体深度强化学习的地区电网群体协同优化调度策略

基于多智能体深度强化学习的地区电网群体协同优化调度策略

陆亚楠 杨胜春 李亚平 姚建国 高冠中 毛文博

电力信息与通信技术2024,Vol.22Issue(4):1-10,10.
电力信息与通信技术2024,Vol.22Issue(4):1-10,10.DOI:10.16543/j.2095-641x.electric.power.ict.2024.04.01

基于多智能体深度强化学习的地区电网群体协同优化调度策略

Regional Power Grid Group Collaborative Optimization Dispatching Strategy Based on Multi-agent Deep Reinforcement Learning

陆亚楠 1杨胜春 1李亚平 1姚建国 1高冠中 1毛文博1

作者信息

  • 1. 中国电力科学研究院有限公司(南京),江苏省 南京市 210003
  • 折叠

摘要

Abstract

Giving full play to the regulatory characteristics of the controllable resource group can greatly improve the dynamic regulation capacity of the regional power grid.Therefore,a collaborative optimal scheduling method for controllable resource groups is proposed,and multi-agent deep reinforcement learning technology is used to solve multi-group complex collaboration problems.Firstly,the regional power grid optimization and dispatching problem considering multiple controllable resource groups is modeled,and the power grid optimization goals and system safety operation constraints are set.Secondly,the basic principle of multi-agent deep deterministic strategy gradient algorithm is expounded.Then,the policy gradient update algorithm is used to seek the optimal scheduling strategy of controllable resource group collaboration,and the corresponding evaluation indicators are defined to test the offline training effect and online application effect of the agent respectively.Finally,based on the improved IEEE test system,the effectiveness of the proposed method is verified.

关键词

多智能体/数据驱动/深度强化学习/优化调度/可调控资源群体

Key words

multi-agent/data driven/deep reinforcement learning/optimize scheduling/controllable resource groups

分类

信息技术与安全科学

引用本文复制引用

陆亚楠,杨胜春,李亚平,姚建国,高冠中,毛文博..基于多智能体深度强化学习的地区电网群体协同优化调度策略[J].电力信息与通信技术,2024,22(4):1-10,10.

基金项目

国家自然科学基金项目(U2066212). (U2066212)

电力信息与通信技术

OACSTPCD

1672-4844

访问量0
|
下载量0
段落导航相关论文