|国家科技期刊平台
首页|期刊导航|灌溉排水学报|大水位变幅下多级闸控河渠自适应控制方法研究

大水位变幅下多级闸控河渠自适应控制方法研究OACSTPCD

Adaptive control method for multi-gate canals under large water level variations

中文摘要英文摘要

[目的]提高多级闸控河渠水位变幅较大时的河渠水位控制精度,减小河渠水位振荡,提升控制算法的收敛效率.[方法]利用河渠实时水位动态修正ID模型参数并调整闸坝启闭频率,提出自适应预测控制(APC)算法,对比分析 6 种工况下不同控制算法的精度与效率.[结果]与基于ID模型的线性二次型控制(LQR)算法与模型预测控制(MPC)算法相比,APC算法可分别缩短 19%~32%和 8%~40%的调控时长,可减少 47%~97%和 14%~93%的河渠水位累计波动,可减小 24%~77%和 5%~59%的河渠水位平均绝对偏差.[结论]APC算法提高了多级闸控河渠水位的控制精度和算法的收敛性,可在不同的河渠水位变幅下保持良好的控制性能,能够为多级闸控河渠的智慧水利建设提供技术支持.

[Objective]The aim of this study is to improve the accuracy of water level control,minimize water level oscillations,and improve the convergence efficiency of control algorithms for multi-stage gate-controlled canals operating under significant water level variations.[Method]We propose an adaptive predictive control algorithm(APC)which dynamically adjusts the parameters of the identification(ID)model based on real-time canal water level data and modifies the activation frequency of sluices.The performance of the APC algorithm is comprehensively evaluated and compared with other control algorithms under six distinct operational conditions.[Result]In comparison to the linear quadratic controller(LQR)and the model predictive controller(MPC)based on the ID model,the APC algorithm shows significant improvements in accuracy and reliability,reducing the regulation duration by 19%to 32%and 8%to 40%respectively,damping the cumulative fluctuation of the canal water level by 47%to 97%and 14%to 93%respectively,lowering the mean absolute deviation of canal water level by 24%to 77%and 5%to 59%,respectively.[Conclusion]The APC method can substantially improve the precision of water level control and the convergence for multi-stage gate-controlled canals.It is robust for various canal water level amplitudes,thereby providing a crucial technical support for advancing intelligent management of water conservancy infrastructures.

杨忆昕;黄草;刘晋龙;李威岐;曹劲松

长沙理工大学 水利与环境工程学院,长沙 410114长沙理工大学 水利与环境工程学院,长沙 410114||洞庭湖水环境治理与生态修复湖南省重点实验室,长沙 410114北京市市政工程设计研究总院有限公司,北京 100082

水利科学

沙河实时控制积分时滞模型模型预测控制自适应方法

Sha-Riverreal-time controlintegrator-delay modelmodel predictive controladaptive method

《灌溉排水学报》 2024 (004)

66-73 / 8

国家自然科学基金面上项目(52179004);湖南省水利科技项目(XSKJ2022068-04);长沙理工大学研究生科研创新项目(CXCLY2022069)

10.13522/j.cnki.ggps.2023458

评论