|国家科技期刊平台
首页|期刊导航|数据与计算发展前沿|基于域无关循环生成对抗网络的跨模态医学影像生成

基于域无关循环生成对抗网络的跨模态医学影像生成OA

Domain Independent Cycle-GAN for Cross Modal Medical Image Generation

中文摘要英文摘要

[目的]为解决跨模态医学影像生成任务中因利用未配对数据训练而导致生成图像结构不对齐、精确度低的问题.[方法]本文提出了一种基于域无关循环生成对抗网络的跨模态医学影像生成模型,通过对齐循环生成时的中间特征,约束模态转换前后图像的结构一致性.[结果]在脑部CT-MRI数据集上的实验结果表明,本文所提出的方法能够提升模型在跨模态转换前后图像结构的一致性,从而提高跨模态医学影像的生成质量.[局限]本文目前在脑部多模态数据集上进行了大量实验,还需要在其他数据集中进一步验证其通用性.[结论]本文提出的方法在各类衡量生成图像质量的指标上均优于目前性能最佳的跨模态医学影像生成模型.

[Objective]To solve the problem of misaligned and inaccurate image structure generated by training with unpaired data in cross-modal medical image generation tasks,[Methods]this arti-cle proposes a cross-modal medical image generation model based on domain independent cy-clic generation adversarial network,which constrains the structural consistency of images be-fore and after modal transformation by aligning the intermediate features during cyclic genera-tion.[Results]The experimental results on the brain CT-MRI dataset show that the method pro-posed in this article can improve the consistency of image structure before and after cross-modal transformation,thereby improving the quality of cross-modal medical image generation.[Limitations]This study has conducted a large number of experiments on the multimodal brain dataset.Further verification of its universality is needed in other datasets.[Conclusions]The method proposed in this article outperforms the current best performing cross-modal medical image generation model in various metrics for measuring the quality of generated images.

李浩鹏;周琬婷;陈玉;张曼

北京邮电大学,人工智能学院,北京 100876首都医科大学附属北京天坛医院,北京 100070

生成式对抗网络医学影像生成自注意力机制

generative adversarial networksmedical image synthesisself-attention mechanism

《数据与计算发展前沿》 2024 (002)

80-88 / 9

国家自然科学基金面上项目"面向脑动静脉畸形辅助诊疗的多模态医学影像分析"(62376037);国家自然科学基金青年项目"移动场景眼部多模态生物特征识别"(62006227);辽宁省感知与理解人工智能重点实验室开放课题基金"复杂医学影像分析与生成研究"(20230006)

10.11871/jfdc.issn.2096-742X.2024.02.008

评论