基于PCA-SSA-XGBoost算法的拱坝应力预测模型研究OACSTPCD
Research on Arch Dam Stress Prediction Model Based on PCA-SSA-XGBoost Algorithm
由于大坝应力受水位、温度等众多因素共同作用,各影响因子间的相互关联会引起多重共线性问题,容易导致以此为输入的预测模型出现伪回归现象.此外,现有基于机器学习算法的应力预测模型由于训练特征过多、过度训练易产生过拟合现象,其预测精度还有待提高.针对上述问题,提出了基于主成分分析法(PCA)和麻雀搜索算法(SSA)改进的极限梯度提升算法(PCA-SSA-XGBoost)构建拱坝应力预测模型.该模型首先采用主成分分析法对参数进行降维,降低影响因子的多重共线性影响;进而通过 SSA 算法优化 XGBoost 的超参数,以避免传统算法过拟合,进一步提高模型预测性能.将该模型应用于我国西南某混凝土拱坝工程,对应力及应力相关监测数据进行处理、分析和预测,并与多元线性回归模型(MVLR)、神经网络模型(RBFNN)、极限梯度提升回归预测模型(XGBR)的预测结果进行对比分析.结果表明,基于 PCA-SSA-XGBoost算法的应力预测模型可克服输入变量的多重共线性和过拟合问题,在预测精度方面具有优越性.
Because the dam stress is affected by many factors such as water level and temperature,the interrelationship between these influencing factors will cause multiple collinear problems,which may easily lead to the pseudo-regression phenomenon of the prediction model using this as the input.In addition,the existing stress prediction models based on machine learning algorithms are prone to overfitting due to too many training features and overtraining,and their prediction accuracy needs to be improved.In response to above problems,an improved limit gradient lifting algorithm(PCA-SSA-XGBoost)based on principal component analysis(PCA)and sparrow search algorithm(SSA)is proposed to construct an arch dam stress prediction model.The model first uses principal component analysis to reduce the dimensions of the parameters to reduce the impact of multicollinearity of the influencing factors,and then,the hyperparameters of XGBoost are optimized through the SSA algorithm to avoid the overfitting of traditional algorithm and further improve the prediction performance of model.The model is applied to a concrete arch dam project in southwest China to process,analyze and predict stress and stress-related monitoring data,and the prediction result is combined with that of multiple linear regression models(MVLR),neural network models(RBFNN)and limit gradient lifting regression prediction models(XGBR).The comparisons show that the stress prediction model based on the PCA-SSA-XGBoost algorithm can overcome the multicollinearity and overfitting problems of input variables,and has superiority in prediction accuracy.
崔博;安惠伦;陈文龙;王佳俊
天津大学水利工程仿真与安全国家重点实验室, 天津 300350
水利科学
拱坝应力预测主成分分析极限梯度提升麻雀搜索
arch damstress predictionPCAXGBoostSSA
《水力发电》 2024 (005)
45-53 / 9
国家重点研发计划(2018YFC0407101);国家自然科学基金资助项目(51909187;51879186)
评论