首页|期刊导航|发电技术|基于长短期记忆神经网络的检修态电网低频振荡风险预测方法

基于长短期记忆神经网络的检修态电网低频振荡风险预测方法OACSTPCD

Risk Prediction Method of Low Frequency Oscillation in Maintenance Power Network Based on Long Short Term Memory Neural Network

中文摘要英文摘要

随着电网规模扩大和电力元件不断增加,电力系统检修方式变得日趋复杂,仅依靠传统方法难以对海量检修方式下电网的低频振荡风险进行评估.针对此问题,提出了一种基于长短期记忆(long short term memory,LSTM)神经网络的检修态电网低频振荡风险预测方法.首先,提出了电力系统检修方式的统一编码方法,使计算机能够快速、准确识别电网在各种检修方式下的运行状态;然后,基于同步相量测量单元(phasor measurement unit,PMU)…查看全部>>

With the expansion of power grid scale and the increase of power components,the maintenance methods of power system become more and more complex.It is difficult to evaluate the low-frequency oscillation risk of power grid under massive maintenance only by traditional methods.To solve this problem,a risk prediction method of low-frequency oscillation in maintenance power network based on long short term memory(LSTM)neural network was proposed.Firstly,th…查看全部>>

付红军;朱劭璇;王步华;谢岩;熊浩清;唐晓骏;杜晓勇;李程昊;李晓萌

国网河南省电力公司,河南省 郑州市 450052中国电力科学研究院有限公司,北京市 海淀区 100192国网河南省电力公司,河南省 郑州市 450052中国电力科学研究院有限公司,北京市 海淀区 100192国网河南省电力公司,河南省 郑州市 450052中国电力科学研究院有限公司,北京市 海淀区 100192国网河南省电力公司,河南省 郑州市 450052国网河南省电力公司电力科学研究院,河南省 郑州市 450052国网河南省电力公司电力科学研究院,河南省 郑州市 450052

能源与动力

电力系统检修方式计算机编码低频振荡风险预测长短期记忆(LSTM)

power systemmaintenance methodcomputer codinglow frequency oscillationrisk predictionlong short term memory(LSTM)

《发电技术》 2024 (2)

353-362,10

国网河南省电力公司科技项目(5217022000A8). Project Supported by Science and Technology Foundation of State Grid Henan Electric Power Company(5217022000A8).

10.12096/j.2096-4528.pgt.22152

评论

您当前未登录!去登录点击加载更多...