| 注册
首页|期刊导航|发电技术|基于长短期记忆神经网络的检修态电网低频振荡风险预测方法

基于长短期记忆神经网络的检修态电网低频振荡风险预测方法

付红军 朱劭璇 王步华 谢岩 熊浩清 唐晓骏 杜晓勇 李程昊 李晓萌

发电技术2024,Vol.45Issue(2):353-362,10.
发电技术2024,Vol.45Issue(2):353-362,10.DOI:10.12096/j.2096-4528.pgt.22152

基于长短期记忆神经网络的检修态电网低频振荡风险预测方法

Risk Prediction Method of Low Frequency Oscillation in Maintenance Power Network Based on Long Short Term Memory Neural Network

付红军 1朱劭璇 2王步华 1谢岩 2熊浩清 1唐晓骏 2杜晓勇 1李程昊 3李晓萌3

作者信息

  • 1. 国网河南省电力公司,河南省 郑州市 450052
  • 2. 中国电力科学研究院有限公司,北京市 海淀区 100192
  • 3. 国网河南省电力公司电力科学研究院,河南省 郑州市 450052
  • 折叠

摘要

Abstract

With the expansion of power grid scale and the increase of power components,the maintenance methods of power system become more and more complex.It is difficult to evaluate the low-frequency oscillation risk of power grid under massive maintenance only by traditional methods.To solve this problem,a risk prediction method of low-frequency oscillation in maintenance power network based on long short term memory(LSTM)neural network was proposed.Firstly,the unified coding method of power system maintenance mode was proposed,so that the computer can quickly and accurately identify the operation state of power grid under various maintenance modes.Then,based on the historical data measured in real time by phasor measurement unit(PMU),the number of low-frequency oscillation of power grid under different maintenance modes was predicted by using LSTM neural network,so as to evaluate the risk of low-frequency oscillation of power grid under maintenance.Finally,a regional power grid in central China was taken as an example to verify the accuracy and rapidity of the proposed method.

关键词

电力系统/检修方式/计算机编码/低频振荡/风险预测/长短期记忆(LSTM)

Key words

power system/maintenance method/computer coding/low frequency oscillation/risk prediction/long short term memory(LSTM)

分类

能源与动力

引用本文复制引用

付红军,朱劭璇,王步华,谢岩,熊浩清,唐晓骏,杜晓勇,李程昊,李晓萌..基于长短期记忆神经网络的检修态电网低频振荡风险预测方法[J].发电技术,2024,45(2):353-362,10.

基金项目

国网河南省电力公司科技项目(5217022000A8). Project Supported by Science and Technology Foundation of State Grid Henan Electric Power Company(5217022000A8). (5217022000A8)

发电技术

OACSTPCD

2096-4528

访问量0
|
下载量0
段落导航相关论文