基于改进YOLOv5s的复杂道路交通目标检测算法OA北大核心CSTPCD
Complex Road Traffic Target Detection Algorithm Based on Improved YOLOv5s
针对目前自动驾驶场景下交通目标检测算法抗复杂背景干扰能力弱,导致检测性能不足的问题,提出了一种改进 YOLOv5s的复杂道路交通目标检测算法.首先,在特征提取区域,采用多头自注意残差模块(MHSARM)来强化待检目标特征信息,弱化复杂背景干扰;其次,在特征融合区域,采用 CoordConv代替传统 Conv,使网络具备空间信息感知能力,提升网络检测精度.在开源数据集 Kitti 及 BDD100K 上的实验结果表明:改进 YOLOv5s 算法在复杂道路中具备更强的特征提取能力及良好的泛化能力,mAP_0.5 分别达到 93.3%和 47.4%,与 YOLOv5s 相比,分别提升了 0.9%和 1.4%.另外,改进 YOLOv5s相较于目前最新的目标检测算法 YOLOv7、YOLOv8,mAP_0.5分别提高了 1.3%和 2.2%,与在 Kitti数据集上最新的研究成果 Sim-YOLOv4 算法相比,mAP_0.5 提高了 2.2%.
A complex road traffic object detection algorithm was proposed to address the issue of traffic target detec-tion algorithms' inability to resist complex background interference and insufficient detection performance in the cur-rent autonomous driving scenario.At first,the multi-head self-attention residual module(MHSARM)was used to improve the feature information of the target to be inspected while decreasing the complex background interference.Secondly,in the feature fusion area,CoordConv was used instead of traditional Conv,so that the network could perceive spatial information and improve network detection accuracy.The improved YOLOv5s algorithm had stron-ger feature extraction ability and good generalisation ability in complex roads,and mAP_0.5 reached 93.3%and 47.4%,respectively,which was higher than that of YOLOv5s 0.9%and 1.4%.In addition,compared with the latest target detection algorithms YOLOv7 and YOLOv8,the mAP_0.5 of improved YOLOv5s improved by 1.3%and 2.2%,respectively.Compared with the latest research results of Sim-YOLOv4 algorithm on Kitti dataset,mAP_0.5 improved 2.2%.
汤林东;云利军;罗瑞林;卢琳
云南师范大学 信息学院,云南 昆明 650500||云南师范大学 云南省教育厅计算机视觉与智能控制技术工程研究中心,云南 昆明 650500云南省烟草烟叶公司,云南 昆明 650500
计算机与自动化
自动驾驶目标检测YOLOv5sMHSARMCoordConv
automatic drivingtarget detectionYOLOv5sMHSARMCoordConv
《郑州大学学报(工学版)》 2024 (003)
64-71 / 8
国家自然科学基金资助项目(62265017)
评论