一种多层多模态融合3D目标检测方法OA北大核心CSTPCD
3D Object Detection Based on Multilayer Multimodal Fusion
在自动驾驶感知系统中视觉传感器与激光雷达是关键的信息来源,但在目前的3D目标检测任务中大部分纯点云的网络检测能力都优于图像和激光点云融合的网络,现有的研究将其原因总结为图像与雷达信息的视角错位以及异构特征难以匹配,单阶段融合算法难以充分融合二者的特征.为此,本文提出一种新的多层多模态融合的3D目标检测方法:首先,前融合阶段通过在2D检测框形成的锥视区内对点云进行局部顺序的色彩信息(Red Green Blue,RGB)涂抹编码;然后将编码后点云输入融合了自注意力机制上下文感知的通道扩充PointPillars检测网络;后融合阶段将2D候选框与3D候选框在非极大抑制之前编码为两组稀疏张量,利用相机激光雷达对象候选融合网络得出最终的3D目标检测结果.在KITTI数据集上进行的实验表明,本融合检测方法相较于纯点云网络的基线上有了显著的性能提升,平均mAP提高了6.24%.
Camera and lidar are the key sources of information in autonomous vehicles(AVs).However,in the cur-rent 3D object detection tasks,most of the pure point cloud network detection capabilities are better than those of image and laser point cloud fusion networks.Existing studies summarize the reasons for this as the misalignment of view between im-age and radar information and the difficulty of matching heterogeneous features.Single-stage fusion algorithm is difficult to fully fuse the features of both.For this reason,a nova 3D object detection based on multilayer multimodal fusion(3DMMF)is presented.First,in the early-fusion phase,point clouds are encoded locally by Frustum-RGB-PointPainting(FRP)formed by the 2D detection frame.Then,the encoded point cloud input is combined with the self-attention mechanism context-aware channel to expand the PointPillars detection network.In the later-fusion phase,2D and 3D candidate boxes are coded as two sets of sparse tensors before they are not greatly suppressed,and the final 3D target detection result is obtained by us-ing the camera lidar object candidates fusion(CLOCs)network.Experiments on KITTI datasets show that this fusion detec-tion method has a significant performance improvement over the baseline of pure point cloud networks,with an average mAP improvement of 6.24%.
周治国;马文浩
北京理工大学集成电路与电子学院,北京 100081
计算机与自动化
自动驾驶多传感器融合3D目标检测点云编码自注意力机制
auto-drivingmulti-sensor fusion3D target detectionpoint cloud codingself-attention mechanism
《电子学报》 2024 (003)
696-708 / 13
装备预研领域基金(No.61403120109) Equipment Pre-Research Field Foundation(No.61403120109)
评论