| 注册
首页|期刊导航|计算机工程与应用|基于多模态数据的人体行为识别方法研究综述

基于多模态数据的人体行为识别方法研究综述

王彩玲 闫晶晶 张智栋

计算机工程与应用2024,Vol.60Issue(9):1-18,18.
计算机工程与应用2024,Vol.60Issue(9):1-18,18.DOI:10.3778/j.issn.1002-8331.2310-0090

基于多模态数据的人体行为识别方法研究综述

Review on Human Action Recognition Methods Based on Multimodal Data

王彩玲 1闫晶晶 1张智栋1

作者信息

  • 1. 西安石油大学 计算机学院,西安 710065
  • 折叠

摘要

Abstract

Human action recognition(HAR)is widely applied in the fields of intelligent security,autonomous driving and human-computer interaction.With advances in capture equipment and sensor technology,the data that can be acquired for HAR is no longer limited to RGB data,but also multimodal data such as depth,skeleton,and infrared data.Feature extrac-tion methods in HAR based on RGB and skeleton data modalities are introduced in detail,including handcrafted-based and deep learning-based methods.For RGB data modalities,feature extraction algorithms based on two-stream convolu-tional neural network(2s-CNN),3D convolutional neural network(3DCNN)and hybrid network are analyzed.For skele-ton data modalities,some popular pose estimation algorithms for single and multi-person are firstly introduced.The classi-fication algorithms based on convolutional neural network(CNN),recurrent neural network(RNN),and graph convolu-tional neural network(GCN)are analyzed stressfully.A further comprehensive demonstration of the common datasets for both data modalities is presented.In addition,the current challenges are explored based on the corresponding data struc-ture features of RGB and skeleton.Finally,future research directions for deep learning-based HAR methods are discussed.

关键词

视频理解/人体行为识别/深度学习/特征提取/姿态评估算法

Key words

video understanding/human action recognition/deep learning/feature extraction/pose estimation algorithms

分类

信息技术与安全科学

引用本文复制引用

王彩玲,闫晶晶,张智栋..基于多模态数据的人体行为识别方法研究综述[J].计算机工程与应用,2024,60(9):1-18,18.

基金项目

国家自然科学基金(62276213). (62276213)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量19
|
下载量0
段落导航相关论文